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1. Introduction

Satellite- or aircraft-borne synthetic aperture radars (SAR) have the potential to
serve as a powerful and essential part of the global meteorological/oceanographic
observation system (Visecky and Stewart, 1982; Phillips, 1988; NASA, 1988). While the
potential of SAR systems is enormous, quantitative interpretation of SAR signals has
clearly been frustrated by our incomplete understanding of the relationships between the
radar backscatter cross section oa and a complicated heterogeneous and constantly
changing state of the sea surface.

One analytical approach (Alpers el al., 1981) is to describe a' in terms of a
modulation transfer function R(K), in which R is a function of wave tilt as well as
hydrodynamic and orbital velocity effects. It is important to note, however, that each of
these effects also depends in a complicated fashion upon the structure of the overlying
marine atmospheric boundary layer (MABL). The use of empirical relationships such as
the "SASS-1 power law model" has led to considerable uncertainty because the
fundamental relationships are circumstantially rather than physically or mathematically
defined. The combination of wave-current interaction models with physically based radar
scattering models is being used by other High-Res Accelerated Research Initiative (ARI)
Principal Investigators to address these problems. Because the dominant atmospheric
forcing of the sea surface is caused by wind stress, much better knowledge of the spatial
and temporal variability of this stress is required before the wave-action spectrum can be
adequately specified by such wave-current interaction models.

In the first phase of our High-Res ARI work summarized here, we began
developing two new marine atmospheric boundary layer models of the surface stress
caused by submesoscale boundary layer coherent structures and we finished obtaining
planview patterns of surface stress variability caused by MABL updrafts and downdrafts
(Sikora, 1992, Sikora and Young, 1992, 1993).. As a result of observations taken in
September, 1991 during the High-Res ARI pilot cruise in Gulf Stream current, we began
turning our attention to such mesoscale atmospheric circulations as the solenoidal
circulation over the sea surface temperature front, the coastal sea breeze circulation, and
the flow between the Bermuda High and the diurnally varying pressure trough on the
coastal plain. These phenomena are expected to occur again during the second ARI cruise
in the summer of 1993.

The submesoscale convective structures of importance include horizontal roll
vortices, which are quasi-two-dimensional circulations that fill the boundary layer (BL),
and BL convective cells, which are fully three-dimensional flows that may replace the rolls
as the surface energy fluxes increase, or which may form independently of the rolls in less
windy conditions. Each of these circulations depends sensitively and to varying degrees
upon different dynamical and thermodynamical forcing mechanisms; important ones
include BL wind shear, air/sea temperature difference, and the magnitude of radiational
and latent heating in clouds. All of these mechanisms contribute to the transport of
horizontal momentum downward and so to stress variability at the sea surface. The
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horizontal scales of this contribution to the total stress are the same-about 100 m to 10
km-as that of the circulations themselves. Evidence from SAR imagery of significant
stress variations caused by two-dimensional BL roll vortices can be plausibly inferred from
Fig. 19 of Visecky and Stewart (1982) and is very convincingly found in the pass 1339
SEASAT dataset by Gerling (1985, 1986). Moreover, three-dimensional convective cells
are evidenced in the orbit 832 ERS-1 SAR image obtained by Dr. Bob Beal of The Johns
Hopkins University Applied Research Laboratory (APL); this image is centered on the
coordinates 360 24' N, 740 00' W and was taken on 13 September 1991 at 0321 Z during
the first High-Res cruise. Such submesoscale, two- and three-dimensional structures,
which are quite common over the Gulf Stream, are expected to be seen during the 1993
High-Res field program as well.

In this report, we briefly review our progress on the work that will be continued
and extended during the second phase of the project from October 1, 1992 to September
30, 1995. In Appendix A and Appendix B we give two manuscripts of journal articles
summarizing our results. The first one by Sikora and Young (1993) discusses the
planview patterns of surface stress variability and will appear in Boundary Layer
Meteorology, while the second one by Wells et al. (1993) discusses a new method for
estimating the correlation dimension of boundary layer turbulent time series.

2. Observations during the first High-Res cruise

Instrumentation for monitoring the surface fluxes of momentum, heat, moisture,
and downwelling radiation was operated aboard the USNS Bartlett during the first High-
Res ARI cruise in September, 1991 by Dr. George Young and graduate student Jeff Hare.
The combination of a sonic anemometer for fast response temperature and three-
component wind measurements as well as an IR hygrometer for fast response humidity
measurements allowed computation of the air/sea fluxes of momentum, heat, and moisture
via the inertial dissipation method (Fairall and Larsen, 1986). Jeff Hare has analyzed these
observations under the supervision of Dr. Dennis Thomson, and he reported his results at
the spring 1992 Hi-Res ARI workshop that was held at APL. These results compare well
with measurements from a similar system operated by Dr. Jim Edson of Woods Hole
Oceanographic Institute (WHOI) aboard the RV Oceanus during the same experiment.
However, owing to ship motions, observations of fluxes made on ships may be hard to
interpret, as noted in the MS thesis by Hare (1992).

Physical interpretation of these air/sea flux variations across the Gulf Stream front
is complicated by mesoscale atmospheric evolution on the same time scale as the ship's
transfrontal box patterns. Thus, the meteorological environment often changed
significantly in the time required for a ship to complete both its frontal transects and its
along-front legs in the two watermasses. The resulting box of air/sea flux observations
reflects a mixture of the desired horizontal gradients of air/sea interaction with the
unavoidable local temporal change. A primary accomplishment during the first phase of
this project has been the development, by Dr. George Young, Todd Sikora, and Jeff Hare,
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of a method for using the results of the Penn State atmospheric mesoscale model, which
was run in operational mode during the experiment, to interpret these air/sea flux
observations. Further studies using this mesoscale model will be performed in phase two
of the project.

The signatures of several mesoscale atmospheric and oceanic phenomena are
apparent in both the observations and the mesoscale model results. The signatures in the
observations would not, however, be interpretable without the vastly superior spatial
coverage of the mesoscale model. For example, while the shipboard observations indicate
that the large amplitude diurnal cycle of surface stress shown in Figure 1 is primarily a
consequence of a diurnal wind cycle, they do not indicate the origin of this wind cycle.
Analysis of the mesoscale model results shows that the wind cycle is a phase-lagged
response to a diurnal cycle of the horizontal pressure gradient in the High-Res region.
This diurnal cycle in the pressure gradient between the Bermuda High and the coastal plain
is the result of a diurnally varying pressure trough over the coastal plain in the lee of the
Appalachian Mountains. The mesoscale atmospheric model consistently demonstrates the
ability to correctly develop and simulate this temporally varying feature even when it is not
adequately resolved by the synoptic observations used for model initialization. This
success stems from the ability of the model to predict the outcome of the interactions
between diurnally varying solar heating and temporally unvarying terrain. The model
typically requires about 12 hours to overcome the errors in its initial conditions when there
is such predictable diurnal forcing.

The Gulf Stream sea surface temperature front offers another mesoscale forcing
feature that is essentially steady on the time stale of the atmospheric mesocirculations.
Thus, it is not surprising that the model adequately predicts the associated atmospheric
mesocirculations that were observed during the first High-Res cruise. Air/sea flux
observations combine with the Penn State mesoscale model forecasts and real-time clou,-
field observations from the GOES satellite and the USNS Bartlett to show that the MABL
responds vigorously to the sea surface temperature difference across the northwest ' all of
the Gulf Stream. Significant differences in the surface fluxes across this v'atermass
boundary were observed to result in a sharp change in MABL structure across the
boundary. This atmospheric front was frequently observed to form in response to the
oceanic front when benign synoptic conditions brought atmospheric flow along the
oceanic front. ..,e resulting atmospheric circulation was reflected bx- both the enhanced
cumulus cloudiness along the front and the convergent wind and stress patterns in the
mesoscale model output. Analysis of this mesoscale feedback between ocean and
atmosphere is still at a preliminary stage. Use of the mesoscale model to guide
interpretation of the above High-Res observations will be pursued by graduate student
Sean Sublette in the second phase of the project.



4

September 16-17, 1991 HI-RES I
Oceanus & Barlett uslar

0.5 LI

0.4 A
A

O

+ ,t

0.3 + %

4 0 0

0.2 +

0 A + .• A\ O0 097
+ +?A 0

0 20 4A

time In hours (start 0000 Day 259)
o Obulk + Old o Bbulk A B+d

Figure 1. Time series of surface stress u. calculated using the inertial dissipation (id) and
bulk aerodynamic (bulk) methods fr'om observations taken on RV Oceanus (0)
and Bartlett (B) during the 48-hour period beginning 00 EDT 16 September 1991.



5

3. Modeling of submesoscale BL structures

In order to identify the dominant forcing mechanisms and characteristic spatial and
temporal responses of the various dynamic and thermodynamic modes of submesoscale
MABL convection, we have conducted for a number of years a series of nonlinear
modeling studies of BL rolls (Shirer, 1986; Stensrud and Shirer, 1988; Laufersweiler and
Shirer, 1989; Haack and Shirer, 1992). An important component of these studies has been
comparison of model results with the MABL observations obtained during the KonTur
and FIRE [First ISSCP (International Satellite Cloud Climatology Program) Regional
Experiment] field programs (Shirer and Brummer, 1986; Stensrud and Shirer, 1988; Shirer
and Haack, 1990). Emphasis has more recently been given to studying the modification of
the background wind and temperature profiles by the rolls in order that the probable
forcing that produced the rolls could be estimated (Haack and Shirer, 1992; Shirer and
Haack, 1990). These nonlinear models also yield profiles of the vertical fluxes of
horizontal momentum and heat. These flux profiles are obtained by horizontal integration
over one wavelength of the appropriate products given by the model solutions. The
spatial and temporal variability of these products gives the spatial and temporal variability
of the stress and vertical heat flux through application of either standard bulk aerodynamic
or eddy correlation approaches. These approaches are similar to those used in the analysis
of observational and Large Eddy Simulation (LES) results (e.g., Businger et al., 1971;
Moeng, 1984; Young, 1988).

The above model results have focused on the mid-level properties of the MABL
structures, and so it was convenient to assume that the stress and heat flux vanished at the
lower boundary. These boundary conditions are clearly not suitable for study of the stress
variability at the sea surface, and so during the first two years of our ARI research, Dr.
Hampton N. Shirer, Dr. Robert Wells, Julie Schramm, and Peter Bromfield have begun
creating new nonlinear, Boussinesq, intermediate-order models of both two- and three-
dimensional submesoscale circulations in the MABL. To form the differential equations
for these models, we first set the bottom of the domain to be at the top of the surface
layer, assumed to be at 10 m above the sea surface, and then we choose lower boundary
conditions that are consistent with the wind and temperature profiles typically observed to
occur within the surface layer. Dave Ledvina has written a subroutine that uses standard
similarity theory (Liu et al., 1979) to give the surface roughness Z0 and Monin-Obukhov
length L once the mean wind speed, air/sea temperature difference and humidity difference

have been specified. We use the values of Zo and L from his subroutine to obtain the
constants in the boundary conditions via straightforward manipulations of the similarity
laws for an unstable environment (e.g., Stull, 1988). Other physical effects represented in
the new models include buoyancy, background wind and temperature profiles, Coriolis
turning, and height-dependent momentum and temperature dissipation.

To develop the basis functions for the variable expansions used to create the
intermediate-order models, we solve eigenfunction problems based on the new boundary
conditions; these problems yield nonorthogonal functions for the vertical structure of the
variables that are expressible using exponential and trigonometric functions, These
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functions, as well as the differential equations for the models, are obtained symbolically
with the aid of the programs Derive and MAPLE. The results are output by Derive and
MAPLE in FORTRAN format for convenient insertion into the numerical codes for
simulation of the MABL circulations. Significantly, this approach allows relatively
straightforward extensions of the models. The FORTRAN code is in the final stages of
debugging; preliminary results indicate that the stress and heat flux profiles have the same
qualitative form as that seen, for example, in the submesoscale MABL observations in
Figure 9 of BrUmmer and Busack (1990).

However, because some of the boundary conditions act as a sink of energy while
others act as a source, care must be taken in the way that the perturbation pressure is
handled in the three-dimensional model. A reformulation of the first version of the model
created by Julie Schramm is an early task of phase two of the study. This reformulation,
which will be undertaken by graduate student Louis Zuccarello, will use the vector
vorticity equation as a device for circumventing the need to explicitly represent the
pressure perturbation. In addition, a separate two-dimensional model based on the along-
roll component of the vorticity is being created by graduate student Peter Bromfield.

The versions of the intermediate-order models currently being developed represent
two- and three-dimensional structures that have a single horizontal wavelength. As a
consequence, the results from these versions of the model will provide estimates of only
the symmetric component of sea surface stress variability. However, for the comparison
with observations using conditional sampling of updrafts and downdrafts in the lower
portion of the domain, we will need to include at least three horizontal wavenumbers in
the variable expansions for the model. In this extended model to be developed in phase
two of the project, we expect to maintain the same level of resolution in the vertical, and
so this extension will be relatively straightforward to complete with the aid of Derive or
MAPLE. This new level of resolution will be compatible with the aircraft data analysis by
Todd Sikora, who gives the surface layer patterns of the vertical fluxes of heat and
momentum in updrafts and downdrafts (section 4 and Appendix A). In our comparison
with these observations, we will determine in particular whether the modeled stress
patterns agree with the observed ones that are only weakly dependent on the degree of
instability, or thermal forcing.

Once fully extended, the above models will be ready for study of both idealized
profiles and the ones observed during the KonTur, FIRE, ASTEX and High-Res MABL
field programs. To compare our results with High-Res cases, we must supplement the
wind and temperature profiles measured using ship-based sensors with profiles derived
from the Penn State mesoscale model forecasts, owing to difficulty in interpreting the
ship-based measurements of these profiles (section 2).

Because the initially developing solutions of the intermediate-order model are
temporally periodic (which corresponds to downwind propagation of the convective
circulations), we can obtain the expected wavelength and orientation of the MABL
structures. These wavelengths and orientations can be compared with those inferred from
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available ERS- 1 SAR images or visible satellite imagery. The resulting solutions can be
conditionally sampled in a way similar to that used by Todd Sikora, who, during the first
phase of the study, has documented the coarse horizontal variability of the stress patterns
in updrafts and downdrafts measured at 50 m above the sea surface during FIRE; these
results are summarized in the next section and Appendix A. In addition, similar
conditional sampling strategies will be used to compare the model solutions with the
sodar-derived structures of the vertical velocity within thermals that were measured during
the first High-Res cruise and that are expected to be measured during the main cruise in
1993.

4 Analysis of BL observations

As noted earlier, mesoscale circulations and submesoscale MABL convective
structures are being emphasized in our observational analyses during phases one and two
of our work because they are the primary atmospheric modulators of surface stress on the
mesoscale and submesoscale spatial and temporal scales in the H-igh-Res region of the
Gulf Stream. The primary goal of our analyses is the development of quantitative
conceptual models of these mesoscale and submesoscale circulations within different
large-scale atmospheric regimes. The major objective is the determination of the temporal
and spatial patterns of mesoscale and submesoscale surface stress and heat flux variability
for each observed case, stratified where possible by appropriate large-scale forcing as
measured by the controlling parameters.

The quantitative observational description of the role of submesoscale MABL
convection in causing horizontal air/sea flux variability was summarized in the MS thesis
by Sikora (1992), was presented at the Tenth Symposium on Turbulence and Diffusion
(Sikora and Young, 1992) and will appear in Boundary Layer Meteorology (Sikora and
Young, 1993, which is Appendix A). Aircraft turbulence measurements made during the
first stratocumulus phase of FIRE (Albrecht et al., 1988) that was conducted under the
1986-1991 ONR-funded University Research Initiative (URI) at Penn State provided the
primary data source. Todd Sikora in his MS research (Sikora, 1992) prepared horizontal
planviews depicting the typical surface layer patterns of the vertical fluxes of momentum,
heat, and moisture associated with the updraft and downdraf, components of
submesoscale convective structures in the MABL. For example, Figure 2 shows the
corresponding composite planview perturbation wind field for MABL convective
downdrafts, the phenomenon that causes "cat's paw" wave patterns at the sea surface
Physical interpretation of these flux patterns shows that these flux patterns exhibit only
limited sensitivity to large-scale atmospheric and oceanic conditions. While the patterns
can differ significantly between stable and unstable atmospheric boundary layers, they are
essentially similar over a broad range of unstable conditions. Thus, these submesoscale
flux patterns are expected to be rather ubiquitous within the MABL. These results can be
used by ocean-wave modelers to quantify the horizontal variability of atmospheric forcing
on spatial scales on the order of 0 1 to 1 .0 km.
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Figure 2. Planview of composite horizontal wind the MABL convective downdrafts in
the surface layer (after Sikora and Young, 1993).
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As the observational study of MABL convection is complete, the only task
remaining in this aspect of the project is to use these results in the modeling effort
described above in section 3. During the second phase of this work, these results will be
used to guide the final stages of model development as well as for the verification and
interpretation of model results. Of particular interest is whether the model corroborates
the observed relatively weak dependence of the flux patterns on the degree of instability.

5. An improved correlation dimension algorithm

The atmospheric structures responsible for creating stress variability at the sea
surface are clearly chaotic, and there remains a major challenge for scientists to suitably
quantify this chaotic structure. Existing algorithms for estimating the correlation
dimension d typically produce results that are difficult to interpret and that are subject to
errors whose magnitudes are not typically estimated. We have developed a new objective
algorithm (Wells et at., 1993 and Appendix B) that overcomes these difficulties because it
is based on hypotheses that are more likely to be satisfied than are the ones for the
standard approach. Not only does this method in principle produce an infinite number of
estimates for the correlation dimension, but it also gives error estimates that, when
minimized, produce the optimal value for d. This algorithm is developed and tested in a
manuscript that has been submitted to Physica D (Wells et al., 1993 and Appendix B)1 a
preliminary version was presented as a poster at the Spring 1992 AGU meeting in
Montreal (Wells et al., 1992). Christian Fosmire in his MS thesis work (Fosmire, 1993)
tests this algorithm using time series data from both the standard Lorenz and Henon
attractors and from sodar data measured in a 1988 field experiment conducted near Penn
State. In addition, in collaboration with Dr. Dennis Thomson, Dr. Harry Henderson has
been applying this and other algorithms to BL measurements (e.g., Thomson and
Henderson, 1991, 1992; Thomson etal., 1991).
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1. Introduction

The marine atmospheric surface layer (MASL) (Z : 0.1 Zi

where Zi is the boundary layer depth) (Stull, 1989) plays a

major role in air/sea interaction. It is the MASL that

couples the sea surface to the overlying atmospheric boundary

layer through vertical eddy fluxes (hereafter referred to

simply as fluxes), such as those of buoyancy, moisture, and

momentum. While these fluxes are present in both stable and

unstable environments, they tend to be enhanced by convective

elements, as is implied by bulk aerodynamic parameterization

(e.g. Liu et al., 1979). For this reason, much of the recent

research in this area has concentrated on the convective

marine atmospheric surface layer (CMASL).

CMASL fluxes are realized through sub-mesoscale

convective updrafts (CUs) and downdrafts (CDs). These

features have diameters on the order of tens to thousands of

meters (Lenschow and Stephens, 1980). Khalsa and Greenhut

(1985) found that within a central Pacific CMASL, such

features were responsible for 75% of the total flux of heat,

moisture, and momentum. This imprtance provides the

motivation to explore further the flux characteristics of

CMASL drafts.

Various methods may be employed to study CMASL drafts.

Qualitatively, this can be accomplished by simply observing

the effects their associated fluxes have on the environment.

On a human scale, anyone who has enjoyed a day of sailing,
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seen wisps of sea fog, or witnessed cats paws rippling across

a body of water has personally sensed the impact of CMASL

drafts on the environment. Another example of this

manifestation can be seen in Figures 1 and 2 of Sikora and

Young (submitted to Boundary Layer Meteorology, November

1992). Figure 1 is a visible image from the Kosmos 1500

(Okean) satellite. The image is centered at 260 N 125.50 W

and is dated July 11, 1984. It shows common boundary layer

cumuliform clouds, horizontal scales of which are on order of

the boundary layer depth, induced by fluxes of heat and

moisture within CMASL-born CUs. Figure 2 is the corresponding

X-band real aperture radar image of the underlying sea

surface. It depicts a perturbed sea surface wave pattern

resulting from CMASL momentum flux patterns driven by flow

into CUs and out of CDs.

In order to obtain data on the effects and structure of

CUs and CDs in a more quantitative sense, various techniques

have been employed, including observations from a sensor

equipped catamaran (Dorman and Mollo-Christensen, 1973), the

use of acoustic sounders (Gaynor and Mandics, 1978), and

observations of sea gulls in flight (Woodcock, i940, 1975).

Data for the quantitative study in this paper are obtained

from NCAR Electra aircraft flights during the First ISCCP

(International Satellite Cloud Climatology Project) Regional

Experiment (FIRE). Flights were conducted over a several

hundred kilometer region west of the southern California coast

during June and July, 1987. For detailed reviews of the FIRE
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project, see Albrecht et al. (1988) and Kloesel et al. (1988).

The traditional way to investigate the flux

characteristics of boundary layer features is through

conditional sampling and composite analysis, examples of which

are discussed below. Simply put, conditional sampling uses an

indicator function to isolate from a dataset features of

interest (e.g. CUs and CDs). Composite analysis then combines

information from these selected features to determine their

average spatial structure.

In the past, various studies have gathered valuable

information concerning boundary layer features using these

sampling and analysis techniques. Wilczak and Tillman (1980)

and Wilczak (1984) used Boulder Atmospheric Observatory tower

data to produce detailed, land-based, statistics for

convective atmospheric surface layer features known as

temperature ramps. Young (1988) also investigated land-based

turbulence at the Boulder Atmospheric Observatory. He

conditionally sampled aircraft data, based upon vertical

velocity perturbations and mixed layer spectra of vertical

velocity and temperature, in order to analyze thermals within

the convective boundary layer. Lenschow and Stephens (1980)

used NCAk Electra aircraft data to generate information on the

structure of marine atmospheric boundary layer (MABL) thermals

using humidity as an indicator function. Greenhut and Khalsa

(1982) and Khalsa and Greenhut (1985) also used aircraft data

to study properties of drafts in the MABL but, as in Young

(1988), they used vertical velocity as an indicator of a
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feature. In addition to observational studies, large-eddy

simulation models, such as that of Schumann and Moeng (1991),

have been used to provide boundary layer datasets for

conditional sampling and compositing.

While previous work has resulted in detailed vertical

profiles of properties of MABL updrafts and downdrafts,

information on planview flux variability of CMASL CUs and CDs

is lacking. To fill this need, this study utilizes

conditionally sampled and composited eddy correlated FIRE

aircraft data to investigate the typical CMASL CU and CD

planview patterns of vertical velocity flux, w'w', buoyancy

flux, w'Tv', absolute humidity flux, w'r', and along-mean-wind

momentum flux, w'u'. Note that while CUs and CDs are

segregated in this study, the technigues used for their

analyses are identical.
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2. Procedures

The use of NCAR Electra turbulence data from project FIRE

is advantageous for the type of research discussed here

because a properly instrumented aircraft provides a means for

collecting high resolution turbulence data from a large number

of CMASL drafts. While each draft can be penetrated only

once, penetrations of many different drafts can be made from

numerous angles. In addition, the turbulence data from a

draft sampled by an aircraft can be looked upon as a snapshot

of that feature (see sub-section 2.3.). The result, after

data processing, conditional sampling, and compositing, is a

statistically robust planview flux description of a typical

CMASL draft.

2.1. FLIGHT INFORMATION

Of the numerous available datasets collected from Electra

flight legs during FIRE, only the 20 used in this study were

conducted within the CMASL. These legs averaged 50 km (500

sec) in length (duration). These legs were flown on seven

different days, during which the average boundary layer depth

was 920 m. The legs were flown at a height of 50 m, well

within the depth of the surface layer. The ratio of the

boundary layer depths to the Monin-Obukhov lengths ranged from

-0.62 to -37.56, indicative of slightly to moderately unstable

MABLs. While flux intensity differences for CUs and CDs are
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seen within this stability range, the "flux-shapes" (the

patterns of spatial variation of flux magnitude across a

draft) are similar. This pattern similarity in the presence

of intensity differences is exactly analogous the geometric

similarity of "similar triangles" of varying sizes.

Structural differences are, however, observed for stable and

extremely unstable cases. Insufficient data prevented the

extension of the composite analysis to these other stability

ranges.

2.2. INSTRUMENTATION AND DATA PROCESSING

The Electra CMASL 20 hz turbulence data used in the

present study include vertical velocity, w, air temperature,

T, absolute humidity, r, and the aircraft-oriented components

of the wind, u, and, v. This sampling rate combined with the

100 m/s aircraft speed yields a minimum resolvable wavelength

of 10 m. A review of the aircraft instrumentation of

significance to this study can be found in Nucciarone and

Young (1991). Data processing for mean, trend, and spike

removal, as well the derivation of buoyancy flux, parallels

that of Moyer and Young (1991). In order to eliminate

contributions Ly mesoscale phenomena in the data, high-pass

filtering is employed following the techniques of Young

(1987,1988).

An example of the spectral response of the filter can be

seen in Figure 1. The figure shows, for a cosine wave, how
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Fig. 1. An example of the spectral response of the filter.

the ratio of the wave's filtered variance to its unfiltered

variance varies with the ratio of wavelength to Zi. In this

example, the cutoff wavelength chosen is 0.1 Zi. At this

wavelength, 50% of the wave's original variance remains. At

longer wavelengths, the amount of the wave's original variance

remaining after filtering diminishes rapidly.

FIRE spectra of Nucciarone and Young (1991) indicate that

1.5 Zi is the appropriate mesoscale subrange cutoff wavelength

for use in the filter. The net result of this data

processing, for any one variable, is a sub-mesoscale

perturbation series (denoted by primed variables) suitable for

computing eddy correlation statistics.

Coordinate rotations are performed on the perturbation

wind components yielding one component in the direction of the
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mean wind, u', and another aligned with positive values 900 to

the left of the mean wind, v'. Unlike that seen in Geernaert

and Hansan (1992), where orographic distortion of the low

level flow may be occurring, the cross-mean-wind components of

the momentum fluxes of this study are both statistically and

physically insignificant when compared with the along-mean-

wind component (i.e. mean < standard deviation for w'v' and

w'v << w'u') . For this reason, the cross-mean-wind momentum

flux will not be discussed.

2.3. CONDITIONAL SAMPLING

In order to distinguish updrafts and downdrafts, event

criteria based on perturbation vertical velocity are required.

Greenhut and Khalsa (1982) and Young (1988) show that w' event

criteria, incorporating germane horizontal scales and

magnitude thresholds, allow for the proper detection of

boundary layer features of interest.

In order to distinguish CUs and CDs, the w' series is

first band-pass filtered to retain only the convective scales

(Young 1988). The band-pass filter is a variation on that

discussed in sub-section 2.2., combining both a high-pass and

low-pass stage. It is designed to eliminate both the

mesoscale and inertial subranqe contributions to the w'

series, while still preserving the CUs and CDs of the energy

containing subrange. As discussed in sub-section 2.2., 1.5 Z

is used as the mesoscale subrange cutoff wavelength. The
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choice of an inertial subrange cutoff wavelength is 0.1 Zi.

As in Young (1988), this choice eliminates scales of motion

associated with the inertial cascade.

Given the average Zi of this study, a minimum draft width

of 50 m is chosen so that the narrowest acceptable event

(CU/CD couplet) corresponds with the 0.1 Zi inertial subrange

cutoff wavelength used in the band-pass filter. All drafts

not meeting the minimum width criteria are rejected because of

their inertial subrange character.

The literature mentioned in section 1. provides numerous

examples of conditional sampling magnitude thresholds designed

to distinguish features of interest from their environment.

Inspection of the FIRE w' data series suggests that a w'

threshold of ± 0.1 m/s eliminates disorganized areas of weak

ascent or decent. Any data points for which w' < 0.1 m/s are

therefore considered not to be part of significant convective

features and are so rejected.

CUs (CDs) are then defined to be features within the

band-pass filtered w' data series meeting these minimum width

and magnitude criteria. The total number of CUs sampled and

usek.- in compositing is 2839, averaging 98 m in width and

occupying 28% of the data series. The total number of CDs

sampled and used in compositing is 3062, averaging 107 m in

width and occupying 33% of the data series. Given the above

widths and an aircraft velocity of 100 m/s, it can be shown

that Taylor's Hypothesis is valid (Stull 1989). Draft

composites of eddy correlation statistics can therefore be
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looked upon as typical planview flux snapshots of a CU or a

CD.

2.4. COMPOSITING OF EDDY CORRELATION STATISTICS

After the isolation of CUs and CDs, eddy correlation

fluxes of vertical velocity, buoyancy, absolute humidity, and

along-mean-wind momentum are calculated from the high-pass

filtered dataset, for each draft. Note that, unlike the band-

passed series used to locate the sub-mesoscale CUs and CDs,

this series retains the inertial subrange contributions. Only

the mesoscale contributions are filtered out, as discussed in

sub-section 2.2.. In order to develop typical planview flux

snapshots, the fluxes from all the drafts are composited

together using the series of averaging calculations and

grouping techniques discussed below.

Each draft is first divided into 3 bins of equal length:

the aircraft entry region of the draft, bin (a), the middle of

the draft, bin (b), and the aircraft exit region of the draft,

bin (c). The average CU and CD flux patterns for each leg are

then found -,y calculating bin average eddy correlation

statistics as follows. The flux of any variable y by variable

w' is found by first taking the sum of their product over all

points of all like bins [bin (a), (b), or (c)] over all like

drafts (CUs or CDs) within the leg. This sum is then divided

by the number of data points in all like bins of all like

drafts within the leg.
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The resulting 40 leg average drafts (LADs) from the 20

flight legs are then separated into one of 3 equal angular-

width groups. The grouping of an LAD depends on the path

taken by the aircraft, through the draft, relative to the mean

wind. In polar coordinates with the mean wind vector aligned

towards 00, these relative heading groups are: along-mean-

wind (3300 to 300 and 1500 to 2100), cross-mean-wind (600 to

1200 and 2400 to 3000), and diagonal-to-the-mean-wind (the

remaining relative heading ranges).

To maintain wind-relative consistency in bin naming, flux

data for bins (a) and (c) are switched for those drafts of the

along-mean-wind and diagonal groups whose relative headings

oppose the mean wind. The same is done for LADs of the cross-

mean-wind group whose relative heading range is aligned to the

left of the mean wind. Note that while there are twice as

many relative heading ranges for the diagonal group as for the

other two, the angular width of each heading range in the

diagonal group is only half as large as for the other two.

Thus, the angular coverage of all 3 groups is equal.

The two remaining relative-heading ranges of the diagonal

group (300 to 600 ahx 3000 to 3300) can be merged using

symmetry arguments. Wilczak (1984) shows mirror symmetry of

the horizontal perturbation wind field about an axis aligned

with the mean wind extending through the center of his large-

scale eddy (LSE which is a CU/CD couplet). A similar symmetry

can be seen in the current dataset by examination of the

fluxes of the cross-mean-wind group composites found in
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section 3.. Comparison of the data from the two relative

heading ranges of the diagonal group (not shown) demonstrates

symmetry across the axis of the mean wind for both the upwind

and downwind ends of the drafts. Taking these symmetries into

account, flux data of like LAD downwind bins of the diagonal

group are composited together as are flux data of upwind bins.

Figure 2 shows the spatial relation of the three groups

within a planview draft. Bins are labeled (a), (b), or (c).

Upper case letters indicate the group to which each bin

belongs; the along-mean-wind group (A), the cross-mean-wind

group (C), and the diagonal-to-the-mean-wind group (D). The

mean wind vector is assumed to be directed towards the top of

the figure.

The process of compositing flux data of like LAD bins

into a flux for the corresponding bins of a group average

draft (GAD) will now be explained. First, because the center

bin for all groups corresponds to the same part of the draft,

the average bin (b) flux over all like LADs over all groups

(bin (b) average) may be used to represent the flux in the

center bin of all groups. As stated in sub-section 2.1.,

drafts of each leg are structurally similar in terms of their

flux-shape. However, there is a need to correct for mean

draft intensity differences between like bins of different

LADs. It follows then that LAD bin (a) and (c) fluxes are

rescaled before any averaging to produce GADs. This rescaling

uses a correction coefficient based on the need for inter-leg

similarity in bin (b), described above. This correction
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coefficient is bin (b) average divided by the respective LAD

bin (b). This approach is robust because the LAD bin (b)

fluxes of all the quantities studied are generally large and

of same sign.

The final planview composite is found by simply

overlaying the along-mean-wind, cross-mean-wind, and diagonal-

to-the-mean wind (again using symmetry for the second

diagonal) GADs for each statistic discussed.

cD cA cD

aC bACD cC

aD aA aD

Fig. 2. The spatial relation of the three groups within a
planview draft.
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3. Observational Results

Planview draft flux composites of vertical velocity,

buoyancy, absolute humidity, and the along-mean-wind component

of momentum, along with corresponding bin standard deviations,

are presented in Tables I through VIII. Each table is a three

by three array of group bin fluxes. Bin location in this

array corresponds to its position within the composite draft.

In all tables, the mean wind is directed towards the top of

the table. For each composite, then, the along-mean-wind

group axis is aligned from the upwind center to downwind

center, the cross-mean-wind group axis is aligned from the

middle left to middle right, and the diagonal group makes up

the remainder.

Note that the middle center bin of a]1 tables is its

respective bin (b) average of sub-section 2.4.. Recall also

that the middle center bin is used to rescale all other bins

within a flux composite. For these reasons, the majority of

the uncertainty associated with any flux-shape and intensity

related interleg differences, associated with interleg

differences in the middle center bins, is forced into the

perimeter of the composite array. It follows then that

standard deviations for the middle center bins are not given.

3.1. VERTICAL VELOCITY FLUX

Vertical velocity dictates, to a large extent, the other
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flux patterns discussed in this study. Not only is it used

for the defining of events, but also it is the flux variable

doing the work, so to speak, by advecting the other

quantities. The planview CU wIwI composite is presented in

Table I.

TABLE I

CU vertical velocity flux composite and
corresponding standard deviations.

w1w, (m2s-2 Left Center Right
(std. dev.)

Downwind 0.227 0.244 0.227
(0.015) (0.040) (0.015)

Middle 0.217 0.341 0.225
(0.023) (0.021)

pwind 0.238 0.266 0.238
(0.009) (0.016) (0.009)

Because all bin standard deviations are much smaller than

the bin fluxes, there is statistical confidence in the entire

CU wIwI composite. The strongest flux region is found along

the along-mean-wind group axis with the largest magnitude of

flux being at the center of the composite. This shape

compares well with that found at 50 m over land by Wilczak
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(1984). Examining the perimeter of the composite, the flux

magnitude along the upwind side of the draft tends to be

larger than that along the downwind side, although these

asymmetries are less statistically significant than the radial

variation. The weakest flux is found in the middle right and

left bins.

The planview CD vertical velocity flux composite is

shown in Table II. As with the CU composite, there is

TABLE II

CD vertical velocity flux composite and
corresponding standard deviations.

w'w'(m2 s- 2 ) Left Center Right
(std. dev.)

Downwind 0.160 0.161 0.160(0.011) (0.018) (0.011)

Middle 0.171 0.204 0.173(0.024) (0.024)

0.162 0.166 0.162Upwind (0.009) (0.019) (0.009)

statistical confidence in all bin fluxes. While the largest

magnitude of w'w' is again found in the center middle bin, the

over all flux composite is weaker than that of the CU. This
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finding is in agreement with those of Greenhut and Khalsa

(1982) for their coherent downdrafts. As with the CU

composite, other aspects of the w'w' pattern are less

statistically significant. The strongest flux region is found

along the cross-mean-wind group axis. Flux along the upwind

side of the draft is slightly larger than that along the

downwind side.

3.2. BUOYANCY FLUX

The buoyancy flux of the current study has the same sign

and approximates to a large extent the magnitude of the heat-

flux w'T'. The planview CU buoyancy flux composite is

presented in Table III. While the composite corners lack

statistical significance, there is statistical confidence in

that part of the composite consisting of the along-mean-wind

and cross-mean-wind groups. Along these axes, general

symmetries exist with strongest w'Tv' being at the middle

center of the composite. All fluxes within the composite are

down-gradient. This finding is in agreement with those of

Khalsa and Greenhut (1985) for their lowest levels.

The planview CD buoyancy flux composite is presented in

Table IV. Statistical significance in the w'Tv' pattern is

similar to that of the CU. The along-mean-wind and cross-

mean-wind group axes are more symmetric than in the CU while

the diagonal-to-the-mean-wind group axis is even more
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TABLE III

CU buoyancy flux composite and corresponding
standard deviations.

w'Tv'(ms-loC) Left Center Right
(std. dev.)

Downwind 0.024 0.010 0.024(0.021) (0.002) (0.021)

Middle 0.010 0.018 0.011
(0.002) (0.002)

0.006 0.014 0.006
Upwind (0.008) (0.002) (0.008)

asymmetric in the along-mean-wind direction than in the CU.

The pattern of the CD w'Tv' magnitude is similar to that

of the CU. However, not all fluxes are positive. Fluxes

found within the upwind left and right bins, although not

statistically significant, are counter-gradient. In contrast

and as will be seen in sub-section 3.3., all fluxes composing

the CD absolute humidity composite CU of this study are down-

gradient. Keeping in mind the lack of statistical confidence,

the upwind left and right bins of w'TV' for the CD composite,

then, depart from findings of Khalsa and Greenhut (1985) that

warm dry downdrafts have negative buoyancy flux only at levels
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TABLE IV

CD buoyancy flux composite and corresponding
standard deviations.

wITVI(ms-loC) Left Center Right
(std. dev.)

Donid 0.009 0.005 0.009
Downwind (0.005) (0.001) (0.005)

Mide0.004 006 0.004
Middle(0.001) 006 (0.001)

Upid-0.002 0.004 -0.002
Upid(0.009) (0.001) (0.009)

higher than the surface layer. Similar to what is suggested

in Khalsa and Greenhut (1985) for some of their anomalous

patterns, the counter-gradient w'TV' of this study may result

from entrainment of buoyant CU air into the upwind side of the

CD. The positive buoyancy flux portion of the CD TV

composite of this study compares well with findings in the

lowest levels of Khalsa and Greenhut (1985).

Of final note: a surface layer counter-gradient heat

flux is found in the upwind region of the ensemble downdraft

of Wilczak's (1984) vertical cross section. Thus, the

finding of Wilczak (1984) compares well with the current

study.
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3.3. ABSOLUTE HUMIDITY FLUX

The planview CU absolute humidity flux composite is

presented in Table V. Statistical confidence in w'r' exists

TABLE V

CU absolute humidity flux composite and
corresponding standard deviations.

w'r'(gs- m- Left Center Right
(std. dev.)

Downwind 0.045 0.041 0.045(0.003) (0.005) (0.003)

Middle 0.039 0.068 0.041
(0.005) (0.008)

0.049 0.053 0.049Upwind (0.003) (0.010) (0.003)

for all bins of the composite. As is expected by parcel

displacement theory for a CMASL, flux in all bins of the

composite is down-gradient. This property is also found in

the majority of updrafts and downdrafts of Khalsa and Greenhut

(1985). Composite patterns of w'r' resemble, for the most

part, those of w'w'. The largest flux magnitude is found in

the middle center bin. Fluxes along the upwind side of the
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draft is slightly larger han those on the downwind side.

There is, however, symmetry along the cross-mean-wind group

axis.

The CD w'r' composite is presented in Table VI. As with

TABLE VI

CD absolute humidity flux composite and
corresponding standard deviations.

w'r"(gs-m -2) Left Center Right
(std. dev.)

Downwind 0.025 0.025 0.025
(0.003) (0.003) (0.003)

Middle 0.023 0.034 0.022(0.004) (0.003)

0.020 0.021 0.020Upwind (0.002) (0.002) (0.002)

the _J, there is statistical confidence in the entire

composite and the absolute humidity flux is down-gradient

throughout the composite, with a maximum at the center. There

are, however, some differences from the CU w'r' composite. As

is expected from parcel displacement theory and the relative

magnitudes of flux in the w'w' draft composites, a weaker

absolute humidity flux composite is observed for the CD. Also,
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the downwind side of the CD composite contains slightly

stronger flux than that of the upwind side but as in the CU

composite, symmetry exists along the cross-mean-wind group

axis.

3.4 MOMENTUM FLUX

There is statistical confidence for all bins of the CU

planview along-mean-wind momentum flux composite, presented in

Table VII. The flux contained in all bins are down-gradient,

given the usual sign of the surface layer wind shear. This

same property is seen in moist updrafts by Khalsa and Greenhut

(1985). Wilczak (1984), however, shows a region of counter-

gradient momentum flux just inside the trailing edge of his

ensemble updraft vertical cross section. The largest flux

magnitude in the CU composite is found in the middle center

bin. Less significant asymmetries exist. For example, w'u'

is stronger along the downwind side of the composite than

along the upwind side. Weakest flux is found in the middle

left and right bins.

The CD planview flux composite of w'u' is presented in

Table VIII. Statistical confidence exists in all data with
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TABLE VII

CU along-mean-wind momentum flux composite and
corresponding standard deviations.

w'u'(m2s-2) Left Center Right
(std. dev.)

Downwind -0.133 -0.145 -0.133(0.008) (0.041) (0.008)

Middle -0.107 -0.219 -0.099
(0.016) (0.018)

-0.122 -0.123 -0.122
Upwind (0.023) (0.037) (0.023)

the exception of the upwind center bin, where the standard

deviation approaches the magnitude of the flux. As with the

CU, and as seen in Khalsa and Greenhut (1985), w'u' is down-

gradient throughout the composite. As discussed below, this

finding differs from that of Wilczak (1984) for his ensemble

downdraft vertical cross section of w'u'. The region of

strongest flux within the CD composite is found on the

downwind side, while weakest flux is on the upwind side. The

largest magnitude of w'u' is seen in the downwind center bin

while the smallest is in the upwind center bin. Cross-mean-

wind group axis symmetry is seen.

As stated above, Wilczak (1984), using finer
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observational resolution than was possible in this study,

shows a region of counter-gradient momentum flux just inside

TABLE VIII

CD along-mean-wind momentum flux composite and
corresponding standard deviations.

w'u' (m2 s- 2 ) Left Center Right
(std. dev.)

Downwind -0.077 -0.092 -0.077(0.014) (0.027) (0.014)

Middle -0.065 -0.084 -0.063(0.015) (0.016)

-0.043 -0.028 -0.043Upwind (0.008) (0.022) (0.008)

the trailing edge of his ensemble updrafts and downdrafts.

Given the differences in horizontal resolution, it is possible

that the along-mean-wind asymmetries in both studies are

related.
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4. Summary

The coupling of the atmosphere to the ocean surface is

accomplished predominately through fluxes induced by drafts

within the marine atmospheric surface layer. Planview

composite draft eddy correlation flux patterns of vertical

velocity, buoyancy, absolute humidity, and the along-mean-wind

component of momentum, within the convective marine

atmospheric surface layer, are derived in this study. High

resolution turbulence data are obtained from 20 NCAR Electra

50 m mean sea level flight legs from Project FIRE. Data

processing results in a demeaned, detrended, despiked, high-

pass filtered perturbation dataset.

A conditional sampling technique is used to isolate

updrafts and downdrafts of interest from the environment. The

technique uses horizontal scale and magnitude thresholds based

on w' event criteria. The w' dataset is band-pass filtered to

eliminate the inertial subrange contribution (0.1 Zi cutoff

wavelength) and the mesoscale contribution (1.5 Zi cutoff

wavelength). The minimum draft width is 50 m while 0.1 m/s is

the w' magnitude threshold. This technique results in the

isolation of 2839 updrafts, averaging 98 m in width, and 3062

downdrafts, averaging 107 m in width.

After the identification of drafts of interest, eddy

correlation fluxes are calculated for those portions of the

processed dataset where drafts of interest are located. Mean

wind positioning within drafts, draft symmetry, and mean draft
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intensity are used to implement a series of averaging

calculations, grouping techniques, and scaling operations.

The result of the above data manipulation is a planview

composite updraft and downdraft for each flux discussed. The

composites are composed of flux data located in horizontal

three bin by three bin arrays. Each bin represents a mean-

wind-relative sector of a composite draft: upwind, middle, or

downwind by left, center, or right. Along-mean-wind group

axes extend through the center of composite drafts while

cross-mean-wind group axes extend through the middle of

composite drafts.

Statistical confidence exists in the two vertical

velocity flux composites. The strongest flux region of the

updraft composite is located along the along-mean-wind group

axis, with the largest magnitude flux found at the center of

the draft. While the largest magnitude of w'w' within the

downdraft composite is also found at the center of the draft,

the overall composite is weaker and more uniform than that of

the updraft. In the buoyancy flux composites, only data in

bins along the along-mean-wind and cross-mean-wind group axes

are statistically significant. Along these axes, symmetries

exist and the fluxes are down-gradient. Statistical

confidence exists throughout both absolute humidity flux

composites. As is expected by parcel displacement theory, all

fluxes are down-gradient. The largest magnitudes of flux are

found in the middle center bins, and both composites show

cross-mean-wind group axis symmetry. The updraft and
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downdraft along-mean-wind component of momentum flux

composites are statistically significant throughout, with the

exception of the upwind center bin of the downdraft composite.

All fluxes of both composites are down-gradient. The largest

flux magnitude for the updraft is in the middle center bin

while that of the downdraft is located in the downwind center

bin. Along-mean-wind asymmetry exists within both composites

with downwind bins having greater magnitudes of flux than

upwind bins.

It is hoped that this study provides new useful insight

into the planview flux structure of CMASL updrafts and

downdrafts. The degree of spatial resolution in these

results, as well as the techniques presented in this study,

could be of use in verification of nonlinear convective

boundary layer models such as that presented in Haack and

Shirer (1992). These results are also appropriate for the

input of forcing in time dependent two-dimensional ocean wave

models of cats paw-type features.

Of course much room exists for improvement upon and

expansion beyond this study. This study should be used as a

stepping stone for such research initiatives.
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Abstract

The correlation dimension d is used commonly to quantify the chaotic structure of

an attractor of a smooth dynamical system. The saidard algorithm for estimating the value

of d is based on finding the slope of the curve obtained by plotting lnC(r) versus lnr,

where C(r) is the correlation integral and r is the distance between points on the attractor.

It is argued here that this algorithm depends implicitly and sensitively on the assumption

that C(r) is differentiable, which is an assumption apparently not applicable to even the

Lorenz attractor. Moreover, there is uncertainty in the value typically cited for d because its

numerical approximation is often expressed as a function of r and because no objective

criterion is given for locating the scaling region of appropriate values of r to consider.

Finally, a priori statistical error bounds on the approximate value for d are typically not

reported.

In this article, a rigorous means for obtaining from a single data set an infinite

number of independent estimates for the correlation dimension d is given that relies only on

the three assumptions that C(r) is continuous, that C(r) obeys the relation C(r) - r d as r

approaches zero, and that a certain limiting moment exists. The most likely candidates for

d given by this new integral method are those estimates that are relatively constant and

close to one another in a range of r. Moreover, it is demonstrated that, when the nonlacunar

relationship C(r) = rd holds but the empirical estimate C,(r) of C(r) is poor for small

values of r, the integral method converges more rapidly to the correct value of d than does

the standard slope method. Validation of the estimates for d is obtained by making a priori

statistical error estimates that crudely bound the errors between the approximate and actual

values of d. The most likely value for d is now the one yielding the smallest error in these

estimates. Although these results bear on the location of the scaling region, the problem of

identifying that region remains open.



51

A rigorous probabilistic approach is used to develop the expressions in this article.

For any positive numbers p and p, the expected value of (rip)" over distances less than or

equal to p is denoted by E((r/p): r -< p). The limiting moment M(p) is then defined to be

the limit of this expected value as p approaches zero. An infinite number of estimates for d

is obtained first by varying the value of p to produce different values of M(p) and then by

using the simple formula d = pM(p)/(l - M(p)). A priori statistical estimates are given for

the errors in the approximations of the expected values E((rlp) P: r 5 p). Coarser estimates

are given for their differences from M(p), and finally for the resulting approximations of d.

Further refining the identification vf the scaling region thus depends on improving the

estimates of the difference I E((r/p)P r <p) - M(p)

In important cases, the limiting moment M(p) may not exist. But the limit of

E((rp)p: r< p) along a suitable sequence P = PA, P2, P3 ... does exist, and yields the

dimension in the same way. It is a subject for future research to determine this sequence.

Illustrations using the Lorenz and Henon attractors are presented. The integral

method alone yields the following candidates for d: For the Lorenz attractor, 2.08 or 2.09 is

indicated; but for the Henon attractor, no single value is strongly indicated, although the

values appear to fall in the range 1.21 < d< 1.27. For the Lorenz attractor, insufficient

independent time series points are used to yield usable error bounds for d; but for the Henon

attractor, enough are used to produce the estimate d = 1.25±0.15, which holds with a

97.5% probability and moment error tolerance of 0.02, and the estimate d = 1. 25 + 0. 1,

which holds with an 90% probability and moment error tolerance of 0.01. All these values

fall within the ranges typically reported for each attractor.

A simple procedure for estimating the value of d emerges from the statistical error

analysis and its application to the Henon attractor: The optimum value for d is the particular

candidate from the above calculation that minimizes the difference between the bounds a

and A in the inequalities a < C(r)/rd-< ,A that follow from the strong version of the relation

C(r) - rd, upon which the a priori statistical error estimates are based.
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Finally, an equation for the limit as p approaches zero of E((r/p)" [ln(r/p)] :r <Z p)

is found that generalizes to the case C(r)- rd those formulas given by Takens for the

nonlacunar case C(r) = ard when p = 0 and y = 1 or y = 2. In addition, similar equations

are found for the Hentschel and Procaccia generalized dimensions Dq with q an integer.
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1. Introduction

Estimates of the correlation dimension d of a time series are commonly used for

quantifying the chaotic complexity of a physical system (e.g., Grassberger and Procaccia,

1983a, b; Eckmann and Ruelle, 1985; Henderson and Wells, 1988; Baker and Gollub, 1990;

Tsonis, 1992). However, owing to the presence of both intrinsic and extrinsic sources of

error, the merits of this procedure have been debated considerably in the literature (e.g.,

Nicolis and Nicolis, 1984, 1987; Grassberger, 1986, 1987; Smith et al., 1986; Theiler,

1986, 1988; Procaccia, 1988; Smith, 1988; Tsonis and Eisner, 1988, 1989, 1990; Nerenberg

and Essex, 1990; Ruelle, 1990; Essex and Nerenberg, 1991).

Numerous sources of error inherent in the approximation of the attractor dimension

arise from such things as time series collection and preprocessing, model reconstruction,

and the specific dimension algorithm used. Under time series collection, we include the

frequency, number, continuity and duration of the measurements (Nicolis and Nicolis,

1984, 1987; Grassberger, 1986, 1987; Fraedrich, 1986; Smith et al., 1986; Essex et al.,

1987; Smith, 1988; Keppene and Nicolis, 1989; Ramsey and Yuan, 1989; Nerenberg and

Essex, 1990; Ruelle, 1990; Essex, 1991) and contamination by noise (Franaszek, 1984;

Ben-Mizrachi et al., 1984; Theiler, 1986; Simm et al., 1987; Osborne and Provenzale,

1989; Theiler, 1991); under preprocessing, we include low or high pass filtering (Theiler,

1991), interpolation and trend removal, and principal component analysis (Albano et al.,

1988); under model reconstruction, we include the choice of variable or variables (Lorenz,

1991), embedding dimension (Marld, 1981; Takens, 1981; Grassberger and Procaccia,

1983a, b; Keppene and Nicolis, 1989; Nerenberg and Essex, 1990; Tsonis et al., 1993), and

phase lag (Broomhead and King, 1986; Fraser and Swinney, 1986; Albano et al., 1991;

Thomson and Henderson, 1992); and under the dimension algorithm used, we include those

proposed by Kaplan and Yorke (1979), Russell et al. (1980), Takens (1981), Greenside et

al. (1982), Grassberger and Procaccia (1983a, b), Theiler (1987), Henderson and Wells

(1988), and Kember and Fowler (1992).
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In this article, we focus on the last general source, the dimension algorithm used.

Thus it is a principal objective of this article to present, in section 2, new algorithms for

sharpening the accuracy of the estimate for d. In deriving our new algorithms, we seek to

avoid those errors that result from assuming that the correlation integral C(r) is

differentiable when it is not. For example, the standard slope method, which uses the slopes

of the graph of lnC(r) versus lnr (e.g. Grassberger and Procaccia, 1983a, b; Nicolis and

Nicolis, 1984; Eckmann and Ruelle, 1985; Fraedrich, 1986; Grassberger, 1986; Nese, 1987;

Simm et al., 1987; Henderson and Wells, 1988; Keppene and Nicolis, 1989; Tsonis and

Elsner, 1989; Nerenberg and Essex, 1990; Albano et al., 1991; Lorenz, 1991; Nerenberg et

al., 1991), rests implicitly on the hypothesis that C(r) is differentiable.

Unfortunately, careful numerical analysis of the Lorenz attractor (Lorenz, 1963)

suggests that C(r) is not differentiable. In Figure la, two slope method estimates for d are

shown that were each obtained using a simple three-point centered finite-difference

approximation. So that problems introduced by employing model reconstruction of a single

series (e.g., Takens, 1981) were not encountered, both these estimates are based on the same

three-variable, transient-free time series of 20,000 points separated by a time interval of 0.5.

In the first case, the distance data were partitioned into 500 bins of width 0.2, while in the

second case, they were partitioned into 10,000 bins of width 0.01. In Figure la, the

estimates for d using data up to bin distances r are shown; clearly, as the resolution is

increased by decreasing the bin width, the estimates for d become noisier, thereby

suggesting that the slopes of the correlation function are not approaching a limit; that is, the

correlation function is not differentiable. Similar results can be inferred from those in

Cutler (1991).
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Figure 1. Estimates of the correlation dimension d for the Lorenz attractor. A transient-

free, three-variable time series containing 20,000 points is used for the standard case

of Rayleigh number Ra = 28, Prandtl number a = 10, and domain shape parameter

b = 8/3. In (a), the standard slope method is compared when 500 (thick curve; bin

width 0.2) and 10,000 (thin curve; bin width 101) distance r bins are used; in (b) the

slope (thin curve) and integral (thick curve; p =1) methods are compared for the

10,000-bin case; and in (c) the integral method (p = 1) is compared using 500 (thick

curve) and 10,000 (thin curve) bins.
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If in fact the function C(r) is not differentiable, then the standard slope procedure

for estimating the value of d has no foundation and may well break down. We may

illustrate such a collapse in the slope procedure by considering the middle-third Cantor set.

In this case, the function C(r) is the well-known Cantor function that is almost everywhere

differentiable with derivative zero (Folland, 1984). For this function, the slope procedure,

especially if perfectly implemented, would yield an estimate of zero for the correlation

dimension d of the Cantor set rather than the correct value of In 2/ln 3 (Mandelbrot, 1983;

Bamsley, 1988; Cutler, 1991). The example of the Cantor function presents deeper

problems as well: Theiler (1988) shows that the Takens (1985) formula fails to converge for

this example, and below we note that Theiler's argument applies to show that our limiting

moment M(p) does not exist for the Cantor function. We believe that finding a rapidly

converging algorithm for the Cantor function is an outstanding problem to solve in the

search for improved dimension algorithms (see also Arneodo et al., 1987).

In Figure lb we compare results given by the slope method and the integral method

introduced in this article. Both estimates for d use the same 20,000-point transient-free time

series from the Lorenz model that was used to create Figure la, and both use distance data

partitioned into 10,000 bins. As also illustrated in Figure lc, our method clearly does not

suffer from the same noisy property as does the slope method. Moreover, as discussed in

section 3, our approach is not equivalent to merely averaging the slope estimates over some

interval of r, and in fact gives a more accurate answer in an idealized case when there is

noise contamination at small values of r.

We develop in section 2 an integral method that avoids the hypothesis that C(r) is

differentiable by integrating the product rC(r); this method is a generalization of a

dimension estimator proposed by Theiler (1988; 1990) that in turn is based on one proposed

by Takens (1985). We compare in section 3 the accuracy of the integral method with that

of the slope method in a particular case where C(r) scales one way (rc) in an undersampled

or noise-contaminated region and another way (rd) in a well-sampled region. For example.
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Essex (1991) argues that undersampling leads to a value of c that is less than the correct

value of the dimension. In contrast, Ben-Mizrachi et al. (1984) and Simm et al. (1987)

argue that the dimension c to be expected from the noise-contaminated region is the

embedding dimension, while the dimension from the well-sampled region is the correct one

d. In our comparison in section 3, we find both analytically and numerically that the

integral method converges much more rapidly to the correct dimension than does the slope

method. In turn, Theiler (1988) notes that the slope method converges more rapidly than

does direct application of the definition of the correlation dimension.

Another advantage of the integral method is that we may interpret it in a statistical

way so that we are able, in section 5, to equip its dimension approximants with fairly

natural a priori error estimates (cf., Denker and Keller, 1986; Holzfuss and Mayer-Kress,

1986; Ramsey and Yuan, 1989; Theiler, 1990; Judd, 1992; Kember and Fowler, 1992). We

apply in section 6 the integral method dimension and error estimates to the Henon attractor

(Henon, 1976) and the Lorenz attractor (Lorenz, 1963).

Finally, in section 4 we develop rigorous generalizations of the Takens formulas for

estimating the value of d (Takens, 1985) and in section 7 we derive a variant of the integral

method for the Hentschel-Procaccia generalized dimensions D. with q an integer (Hentschel

and Procaccia, 1983). Concluding remarks in section 8 finish the article.

2. Integral Method for Estimating d

We recall the slope method for extracting the correlation dimension d from

knowledge of the correlation integral C(r). First, we suppose that we have the asymptotic

relation

nr) t rd (2.1)

defining the dimension d. It follows immediately that the limit equation
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d = lim In C(r) (2.2)• -*o lnr

produces d. Unfortunately, using (2.2) is an inefficient way to find d (Theiler, 1988); but in

the case that C(r) is differentiable, we may apply L'Hbpital's Rule to (2.2) to obtain the

more efficient formula (Theiler, 1986; Albano et al., 1988)

_ dlnC(r) . r dC(r)
d = limr = lira (2.3)

r-+o dlnr r-#O C(r) dr

Unfortunately again, if C(r) is not known to be differentiable, then the transition from (2.2)

to (2.3) is not necessarily valid and (2.3) does not make sense. Furthermore, even if C(r) is

differentiable, L'H6pital's Rule may not apply to make the two limits in (2.3) equal.

Accordingly, we need an alternative algorithm in the nondifferentiable case.

In this section we develop such an algorithm. We begin by regarding the correlation

integral C(r) as a cumulative probability distribution for the random variable r.

Consequently, we may define for any positive number p the pth normalized moment relative

to the condition r<5 p as the expected value E((r/p)": r 5 p) of the random variable (r/p)",

subject to the condition r : p. Thus, we set

C• r-<p)=-1 op) tiC(r) (2.4)

Then we define the pth limiting moment M(p) of C(r) by setting

M(p) = limE((r/p)_ r < p) (2.5)

The basic result of this section is that, if the limit in (2.5) exists, then the equation

d = pM(p) (2.6)
1 - M(p)

is valid for the correlation dimension d given by (2.2).
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To see that (2.6) is valid, we find it helpful to interpret the asymptotic relation (2.1)

in two senses, a strong sense and a weak sense. We say that (2.1) holds in the strong sense

if there exist positive numbers a, A, and po for which the inequalities

a! <C(r)/rd < A (2.7)

hold whenever the value of r satisfies

0•_ r < p0  (2.8)

The numbers a, A, and p. are parameters relevant to the statistical error estimates in section

5, where we must therefore require the strong sense. We note that the case a = A is the one

termed nonlacunar by Theiler (1988).

In contrast, we say that (2.1) holds in the weak sense if the limit equations

lim C(r) =0 (2.9)
r rd,

and

lim C(r) = (2.10)
,--o r'd2

are valid for any two numbers d, and d2 satisfying

d, < (2.11)

Of course, the strong sense implies the weak. It is the weak sense that suffices for the

derivation below of the formulas for our new integral method.

We need to make only three assumptions about the function C(r), assumptions we

believe to be commonly made and reasonable when C(r) is the correlation integral:
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(i) We assume that C(r) is a continuous function of r. That is, we assume

that no particular value of r is realized with positive probability.

(ii) We assume that the asymptotic equation C(r) - rd holds in the weak

sense.

(iii) For some value of p * 0 such that d + p > 1, we assume that the limiting

moment M(p) of (2.5) exists.

The argument that these three assumptions yield (2.6) is embodied in an easy

calculation. First we integrate by parts to obtain

'rP dC(r) = P C(p) - PfJ° rp-'C(r)dr (2.12)

We combine (2.12) with the definition (2.4) to find

P rP-l C(r)dr

E((r/p)p:r<p)=I-p' pPC(p) (2.13)

Therefore, because the limit M(p) exists by assumption (iii), we obtain

•PorP-lC(r)dr

M(p)= 1-p lim 01 C(r) (2.14)
P--0 PC(p)

in which it follows that the limit on the right side exists. Next we verify that we have

•of r'P-C(r)dr - pP"d (2.15)

in the weak sense, from which it follows that

ln P rP-'C(r)dr
p+d =lim (2.16)

P-40 lnp

Because we have assumed that d+p> 1, we see that the function rP-'C(r) of r is

continuous, and then that Jo'rP-1 C(r)dr is a differentiable function of p. Consequently, we

may apply L'H~pital's Rule to obtain
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p+d = lim PFC(p) (2.17)P-.,o f~o r P_-'C (r)dr

in which the limit exists by (2.14) and assumption (iii). Finally, we obtain from (2.14) and

(2.17)

M(p) = -p =d (2.18)
p+d p+d

from which (2.6) follows.

We note that in the case p = 0, the same Stieltjes integration by parts argument leads

to the Takens estimator (Takens, 1985)

1 d(*1 r)__E([ln(rip)]:r..)=_ (2.19)
C(p) o r d

which is essentially the content of (2.15) and (2.16) in Theiler (1988) or of (22) and (23) in

Theiler (1990).

Remark 1. There is an important subtlety at this point: L'H6pital's Rule does not

imply that if the limit in (2.16) exists, then so does M(p). In fact, the limit in (2.16)

exists whenever C(r) - rd holds, even in the case p = 0, but, as Theiler (1988) notes,

the corresponding moment M(0, 1) defined in (4.19) does not exist for C(r) the

Cantor function; accordingly, the Takens estimator (2.19) fails in that case. In fact,

Theiler's argument applies to show that also the limit M(p) fails to exist for C(r)

the Cantor function.

Remark 2. Even if the limit in (2.17) fails to exist, the Cauchy Mean Value

Theorem (used to prove L'H6pital's Rule; James, 1967) implies that there exists a

sequence p , p21 p31 ... of values of p converging to zero, so that the limit
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M, (p)= lirnmE((rlp, )P:r pk) (2.20)

exists. Then the correlation dimension is given by

d- pM'(p) (2.21)
(I-M,(p))

3. Comparison of Slope and Integral Methods for Estimating d

To form some idea of the relative accuracies of the slope and integral methods, we

consider a case in which the nonlacunar correlation integral C(r) is approximated by the

empirical correlation function

C, Sd-crc for 0<r•6 (3.1)
LE r)=d for 3:5r :5p

where 6 is a positive number; this function is given by the solid curve in Figure 2a.

We take (3.1) as a paradigm for the common situation in which small amplitude

noise distorts the empincal determination of the correlation integral C(r) for small values of

r. In the idealized situation represented by (3.1), we postulate that we recover C(r)

perfectly for values of r in the range 5< r < p, while small amplitude noise leads to a

growth exponent c different from the actual value d in the range 0 : r:5 6. Ben-Mizrachi et

al. (1984), Simm et al. (1987) and Theiler (1986, 1991) have argued that an empirically

determined correlation function may be expected to scale as rc, with c the embedding

dimension, for small values of r where noise contamination dominates, and as rd, with d the

correlation dimension, for larger values of r. Thus, following these studies, we select c > d

as the most realistic case for our example. The choice c = 2d + 1 (MarlN, 1981; Takens,

1981) guides our illustration of Ce(r) in Figure 2a with d = 2 and c = 5.
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Figure 2. Comparison of slope and integral methods for the nonlacunar case C(r) = rd that

is approximated by the empirical correlation function Ce(r) in (3. 1), with d = 2 and

c= 5. Data are well sampled in the working interval [31,p], but are noise-

contaminated in the interval [3,, 6]. In (a), C, (r) (solid curve) and the curve for the

best-f:i'- ope m(W3,p), (3.4), (dashed curve) are shown for the case 61 = 0.6, 6 = 0.7,

and p= 0.9. In (b) and (c), the approximate dimensions given by the slope m(3,, p),

(3.4), (dashed curve) and integral d(p, 81,p), (3.9), (solid curve) methods are

compared. In (b), the case 6, =0.04, 6 =0.2, and p-=- is illustrated as a function of

p. In (c), the case 65 =52, p= , and p = 0. 9 is shown as a function of 6. In both

these cases, the integral method converges faster and is less sensitive to noise

contamination than is the slope method.
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Of course, in actual cases, there will be an intermediate region in which the

empirical correlation function varies from being completely inaccurate for small values of r,

to being essentially accurate for larger values of r. In our example, we eliminate this

intermediate region for simplicity of calculation: The noise-dominated region gives way

abruptly to the well-sampled region at r = 5. Again, in actual cases, there seems to be no

algorithm-or even advice-for deciding where the noise-dominated region ends and the

well-sampled region begins. We incorporate this fact into our example below by not

allowing knowledge of the value of 3 to enter into our line fitting or integrating procedures;

we use the value of 8 only to evaluate the result of these procedures. However, we consider

that the working interval [3i, p] of r used to approximate C(r) includes both well-sampled

and noise-dominated regions. Thus we hypothesize that the inequalities

0 < 1 < p< p <1 (3.2)

are valid; the left-most inequality represents the fact that in any sampling of a time series,

there is a smallest positive distance 3, . We expect, of course, that the accuracy of each

calculation will improve as the length S of the error-contaminated interval [0, 6] decreases

in comparison with the length of the working interval [3, p]. Slightly more roughly, we

expect the accuracy to improve as 8/p decreases in magnitude. Thus, we compare the slope

and integral methods by discovering the rate at which this accuracy increases as the

magnitude of 3/p decreases.

To implement the -lope method in the standard way, we calculate the slope m of the

line y=mlnr+b that best fits the curve y=lnCe(r) between r= 3 and r=p in y-lnr

space (Holzfuss and Mayer-Kress, 1986). If we measure the closeness of fit by means of

the mean-square integral

l m, b)= P•(mlnr +b- lnCe (r ))2 dr (3.3)
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then we find that the value m = m(63, p), belonging to the minimum of 1(m, b), is given,

with the help of the symbolic manipulator Derive, by

m(6,,p)d- d-c [(66 d(1 2i---ln- 6' ln(- -- In L)]
3(Iln -) (63)2 [__ P

(3.4)

This fit is illustrated by the dashed curve expy = rm("aP) expb in Figure 2a.

Subject to the condition that there exist two numbers K, and K, so that

0<K,- 61/6<K2 <1 (3.5)

holds, we obtain from (3.4) the asymptotic relation

m(6,,p)-d= O(61n-) (3.6)

Of course, when 6, = 6 we obtain from (3.4) the expected equality m(6,, p) -d = 0.

However, so long as our fitting interval [6,, p] is contaminated, even slightly, by the noise-

dominated region, the difference between the approximate dimension m(63, p), obtained

from the slope method, and the actual dimension d approaches zero only at the rate of

(6/p) ln(6/p) as the ratio 3/p approaches zero.

The rate of convergence as either p or 6 varies is illustrated in Figures 2b, c, in

which the approximate dimension m(6,, p) is denoted by the dashed curves. In Figure 2b, 6

and 63, are held fixed and the approach of m(6,, p) to d shown as the value of p increases.

In Figure 2c, p is held fixed with 6, = 62, and the approach of m(6,, p) to d illustrated as

6 -* 0. In both cases, the convergence is seen to be quite slow, meaning that even a small

interval of r in which there is noise contamination introduces a considerable error in the

slope dimension estimate.
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In contrast, the difference between the approximate dimension obtained from the

integral method and the actual dimension d approaches zero much faster, at least when the

sum p+d is greater than 1, as required by assumption (iii) in section 2. More specifically,

we use as the interval of integration the same working interval as above, [3,, p], and we use

the formula

M(p, 31,p) - C- (rj) dC, (r) (3.7)

to define the corresponding approximate pth moment M(p, 31, p). Then we use (2.6) to

define the corresponding approximate dimension d(p, 31, p) as

d(p, c1,p) = pM(p, 81 ,p) (3.8)

1 - M(p, 31, p)

We see immediately with the help of Derive that we have

d(p, •6,p) =d+(p+d) k P (3.9)

P(P+C)+ p(d-c)- + c(p+d)(~ (
3

J-

so that

d(p,31,p) -d-= o (3.10)

Thus, as the ratio 3/p approaches zero, we find that the integral approximate dimension

d(p, 3, p) approaches the actual dimension d much faster than the slope approximate

dimension m(8 1, p) (3.4) does when p+ d > I holds. This rapid approach is similar in spirit

to that of Theiler (1988) who noted that his integral method, which is similar to ours for

p = 0, converges more rapidly than the slope method to the actual dimension as p -• 0. For
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p *0, the rapid approach is illustrated by the solid curves in Figures 2b, c for the

conservative case p = -. Finally, we note from Figure 2b that if we interpret the interval

[61, 3] as an undersampled region, then we obtain an underestimate for d in that region, in

agreement with Essex (1991).

In contrast to the slope method, we note that the integral method yields an error in

the approximate dimension d(p, 81, p) even when there is perfect sampling in the range

[3 1, p] because the integral (3.7) upon which the dimension estimate is based really should

be calculated over the entire range [0, p]. Thus the limiting value of d(p, 61, p) when 3 = 31

and c = d is not d but

d(p, 3•, p) = d + (p+ d) (p+d 3.11)

However, this result does not affect the conclusion given by (3.10) concerning the

convergence rate as the noise-dominated region shrinks in size.

4. Extension of Moment Formulas to Those of Takens

In this section we derive the family of formulas given by

lim E((r/p)P [ln(r/p)]7 r 5 p) = (-y1) (4.1)

P-+ (,+ d)y~l

Takens (1985) obtained the two estimators

lim E([ln(r/p)]: r<5 p)= _1 (4.2)
P-0  d

and
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rim E([In(r/p)]2 : r < p) = 2 (4.3)

for the special case of a nonlacunar correlation function C(r) that scales perfectly with r;

that is, C(r) = ard . Here we extend (4.2) and (4.3) to all of (4.1) by deriving (4.1) for the

general case C(r) - rd, where we interpret this asymptotic relation in the weak sense defined

in section 2.

We begin our derivation by noting that we may interpret some of the calculations of

section 2 as describing the effect of rescaling on suitable measures on [0, 1]. We suppose

that y is a nonatomic probability measure on [0, 1] with the property that every

neighborhood of 0 in [0, 1] has positive p-measure. A particular example is the measure vd

defined by setting

Vd (X)= dfS d sId (4.4)

where X is a Borel subset of [0, 1]. Given such a measure g, for any value of p satisfying

0 < p < 1 (4.5)

we may define another such measure pj, by setting

/p(X)=P(PX) (4.6)pz~) /[0, p]

Using this notation, we may formulate an easy theorem:

Theorem If p is a nonatomic probability measure satisfying the condition

C(p) = p[0, p] _ pd (4.7)

for small values of p and possessing limiting moment M(p) for p = 0, 1, 2,..., then

the limit equation

lim-po = Vd (4.8)

is valid in the weak topology for probability measures.
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PROOF We calculate the moment fsp dp (s) of the measure jp. We have

'1 f~(rY'
f-S') -ois) dC(r) (4.9)

C(p) Jokp)

in which s = rip and dp, (s) = dC(r)/C(p). Consequently, we may use (2.4), (2.5)

and (2.18) to obtain

lim 'sP dyp (s)= d
p-+oJ d+p (4.10)

However, for our standard measure vd, we see easily that

sPr d(s)= d
d+p

for any value of p > 0. In particular, we have

lim s'dpp(s)= Js" dvd(s) (4.12)

Consequently we find, for any polynomial P(s), that

lim f P(s) dp (s) = JP(s) dvd(s) (4.13)

and therefore for any continuous function f(s), that

lim f f (s) dp p (s) = Jf(s)dVd (s) (4.14)

Then, by definition of the topology on the space of Borel measures on [0, 1], we

have

"iM/. J• = Vd (4.15)
p-0O

0n
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As a corollary of this theorem (which actually is the next-to-last step in its proof),

we obtain the limit equation

lim[ f (s)dyp (s) = f f (s)dV (s) = dr f(s)sd- ds (4.16)

that is valid for any continuous function f(s). Noting that

E(f(r/p): r 5 p) f Jf(s) dp(s) (4.17)

holds, we obtain
limE fSrld)'r<

lim-E(f(rp): r:5 p)=dJ f(s)s=- ds (4.18)

Now, with f(s) = s (Inns)1 and p+d> 1, we finally obtain the extension of the Takens

(1985) formula for a generalized limiting moment:

M(p, y) = lim E((rlp)_ In r__ Yr< IsP[lns]_sd- = (-1)' _y!=p. /) _ s('~. (4.19)

This equation yields our formula (2.18) in the case y=0 and includes the Takens (1985)

formulas as the cases p=O, y= I and p=0, yy=2, which are given by (4.2) and (4.3).

In practice, as outlined in Takens (1985), (4.2) gives us a way to estimate the value

of d as a mean of a random sample, while (4.3) gives us a way to estimate the associated

variance by means of the Kolmogorov Inequality. In the following section we make use of

the parallel observation for E((r/p)p: r -< p) to arrive at statistical error estimates.
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5. A Statistical Relative Error Bound for d

Takens (1985) notes that the special case p=0, y=1 of (4.19) (essentially)

expresses the mean of a random variable with variance (essentially) expressed by the special

case p = 0, y = 2. He also observes that it is therefore possible to incorporate statistical

methods into an algorithm for estimating the value of the correlation dimension d. More

recently, Theiler (1990) and Kember and Fowler (1992) use such methods to determine

statistical error bounds on d.

Here we seek a priori statistical error bounds for estimates of the correlation

dimension d given by the integral method. We first apply the conventional use of mean and

variance to obtain quick but probably unreliable error bounds. Then we derive more

reliable error bounds with the objective of identifying explicitly-and thereby making

computationally accessible-the underlying assumptions necessary to derive such bounds.

To apply our knowledge of mean and variance to find conventional error bounds for

an estimate of d, we envision a situation in which we may make a large number n of

observations of the random variable (r/p)" for a fixed value of p. We assume that the value

of p is so small that the value of E((r/p)p r <p) is essentially indistinguishable from that

of M(p) so that we may interchange M(p) and E((r/p)p: r •p) in our calculations. Then

we may regard M(p) as the expected value of our random variable (r/p)', and so regard

V(p) = M(2p) -M(p) 2 as its variance. We next assume that our n observations are

independent so that the mean of these observations has a variance of V(p)/n. Using the

Central Limit Theorem (Feller, 1966), we know that when the value of n is large enough,

the mean of n independent observations is essentially normally distributed; we therefore

assume that in our case, the value of n is this large.

Accordingly, the 95% confidence interval J for M(p) is given by

U =2[M(p- - fr p)(p)/n, M(p)e +m 2rV(p)In (5.1)

Using (2. 18) for M(p), we may rewrite (5. 1) as
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2 ( d p 12 d

Thus we conclude that, with p sufficiently small and n sufficiently large, the probability is

0.95 that the mean of n independent observations of (r/p)p is within a relative error of

±2pp2/[nd(2p+d)] of the actual value of M(p). Then, upon applying (2.6) to our

estimate (5.2) of M(p), we find, with probability 0.95, the value of the correlation

dimension d within a relative error of ±2 (p+d)2/[nd(2p+d)]. For example, if we have

d = 2, p = 3 and n = 106, then we should recover d within a relative error of ±-0.0025, so

that d = 2±0.005, with probability approximately 0.95. Of course, such high precision is

not attainable in practice (e.g., Fig. 1c; Grassberger and Procaccia, 1983a, b; Abraham et

a!, 1986; Nese et al, 1987; and Simm et al., 1987).

The failure of conventional means to give realistic error bounds for an estimate of

the correlation dimension suggests strongly that the values of p normally used are not

sufficiently small to allow us to interchange such quantities as M(p) and E(( r <_p),

that the observations of quantities such as (r/p)" are not sufficiently independent to allow us

to simply divide the variance of the mean by the number n of observations, or that the

number of independent observations is not sufficiently large to justify our appeal to the

Central Limit Theorem. Of these three difficulties, perhaps the most serious is the first, that

p is not small enough, as emphasized by Caswell and Yorke (1986).

In view of these difficulties, we use much more elementary and direct, but laborious,

methods in the remainder of this section to obtain realistic a priori statistical relative error

bounds for the estimates of d given by the integral method. That is, for d. an

approximation obtained in a canonical way from a sample of the attractor, we find a

formula bounding below the probability that the inequality

d d d .1 e( 5 3
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holds. In our derivation of that probability formula, we find it convenient to alter the usual

definition of the function C(r) to an essentially equivalent definition. In the usual

definition, we consider a generic trajectory x1, x2, x3 ... of points on the attractor. For k

any positive integer, we calculate the distances Ix,-xI for i < j < k, and we let these

distances be r,, r2, ... , r., in order of calculation, with

k(k-1) (54)

2

We set

k (k card{(i, j)Ix -x<r and i<j <k} (5.5)

where card(X) denotes the number of points in set X. Because the sequence x1, x., x31 ... is

generic, we may assume that the limit

C(r) = lim Ck(r) (5.6)
k-. o0

exists and so defines the correlation function C(r). In our altered definition, we consider a

generic pair of trajectories x1 , x2,... and Y, Y2.'.. . -,and we define the time series r•, r,,... of

distances by setting r =, -y, 1. Then we redefine

C.(r)=-card{il r and i< j<n} (5.7)
n

and

C(r) = lim C. (r) (5.8)

This view is more convenient because we need not renumber the series rj, r2 .... r. for

n = k (k - 1)/2 with each successive choice of k. More important is the fact that this

interpretation avoids the implicit dependence via triangle inequalities of the distances

Ix, -x, I (Theiler, 1990); this interpretation also makes it possible below to measure the near
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independence of the distances r, by means of autocorrelation. However, the two views are

equivalent and our results below using the altered definition hold also for the original one.

For each value of p, we define the number N(p, n) of distances less than p by

setting

'I

N(p,n) = (5.9)
i=l

where X(•) is the characteristic function defined by

X(ý) =(50.i10)<

10 otherwise

Then we define the approximate pth moment M(p, p, n) as

M(p,p,n)- 1 Ir__, Ztp) (5.11)Nip, n) i p)

The approximate dimension d. is then given by definition as (cf. (2.6))

d. = d(p,p,n) = pM(pp,n) (5.12)
1-M(p,p,n)

With these definitions, we derive our error estimate in three major steps. We need

to assume that C(r) - rd holds in the strong sense with parameters po, a and A (see section

2). In our first step, we obtain the coarse absolute bound

E((rlp)p: r <p) -M(p) :ý p Ad (5.13)1pda A]

As we see below, this is not a difficult bound to obtain. In our second step, we obtain a

simple Kolmogorov error bound

Prob( M(p, p, n)- E((r/p)p: r 5 p) 1- r)_ 1- I (5.14)
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where qo depends on n, r, a and A. In (5.14), the symbol Z means "approximately greater

than" in the sense explained below. Finally, we combine (5.13) and (5.14) with (5.12) and

(2.6) to obtain the following theorem:

Statistical Relative Error Bound Suppose that we have positive numbers A, a and

p0 so that the inequality

ar d C(r)• Ard (5.15)

holds for 0 < r <•p 0 . In addition, suppose that 0 < r < -L, 0 < (p, 0 < p -< p0 and

n n(p, T, )=40 (2A2 +aA) (5.16)

9 a3 pd (5.16

hold. Then the inequality

Prob(ld- d _ E(Aj, zýp, dl))> 1- p (5.17)

holds, where we set

E(Ai , p, d.)= Alp+ r(p+da) p+da (5.18)
da-(p+da)(Al+t) p

and

A, =A -- a (5.19)
a A

More precisely, (5.17) should read

Prob d P_ 9 P2da2 (5.20)
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where r1>0 is a measure of the interdependence of the random variables rjr, ...

discussed below; the value of r7 may be made as small as desired by appropriately lagging

the two time series x1, x2 xR and y1, Y2 ... Y.

As outlined above, our first step in deriving (5.17) is to verify (5.13). We may use

the following simple argument to estimate the limiting moment M(p) with some degree of

accuracy. We recall that the moment E((r/p)p: r < p) is given by the Stieltjes integral (2.4):

E((rlp)P:r<_p)= l J.PordC(r) (5.21)pP C(p)

Then integration by parts leads us to

E((r/p)p:r<- p)= I- P fPr"C(r)dr (5.22)pPC(p) (

Finally, for 0 < p < po, we may use (2.7) to conclude that we have

"I AE((r/p)p:r<p)•51-a p (5.23)

a p+d A p+d

Thus we see that for 0< p < p,, both the moment E((r/p)p: r 5 p) and its limit

M(p) as p -* 0 must lie in the interval [1-(A/a)(p/(p+d)), I-(a/A)(p/(p+d))].

Consequently, we have the bound (5.13) for the error E((r/p)p:r<- p M(p) . Ingeneral,

this is a very crude bound; however, this bound is not crude when the values of A and a

nearly agree, as in the case of the Henon map discussed in the next section.

Our first step completed, we turn to the second one of deriving (5.14). As noted at

the beginning of this section, we study the distances between corresponding points on a pair

of time series in the attractor. More specifically, we consider a dynamical system given by

an invertible C' diffeomorphism F: RN - RN with a chaotic compact attractor that is the

closed support of a probability measure p, invariant and ergodic with respect to F. In

addition, we suppose that the measure p xp on R" x RN is strongly mixing and therefore
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ergodic with respect to the map F x F. We let F' = Fo F' and F = F. Then by

definition, for p x p -almost all initial point pairs (x0, yo), the time series of distances

r, F'xo - F'yo (5.24)

may be used to compute the normalized moment E((rlp)p: r 5 p) as the limiting average

n)= li1a (. Z(r,/p) (5.25)-1'] ,--* (p, n) i .P)

where X(4) is the characteristic function defined by (5.10) and N(p,n) is the number of

distances r, such that r, < p and i < n, defined by (5.9).

For simplicity, we assume that each new value of (r,/p)P X(r,/p) is an independent

estimate of the mean in

M0 (p, = p, n) jx(r,/P) (5.26)

Using our ergodic hypothesis, we note that we may write

E((rlp)p x(r/p))= lim Mo(p,p,n) (5.27)

As we show next, this expectation is closely related to E((rlp)':r p), the one we seek.

Using our ergodic hypothesis again, we see that we have

C(p) = lim N(p, n) (5.28)

thereby allowing us to take the limit in (5.25) with the result

E((r/p)P~r p)_-- 1 E((r/p)P X(r/p)) (5.29)
C(p)
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To see that in a fairly general sense we may assume that each new value of

(r /p)P X(r,/p) may be regarded as an independent estimate, we note that the mixing

hypothesis implies that the formula

lim -f(x.y)f(Fmx, F y)dp(x)dM (y) = (J ff(x, y)dpt(x)dt (y))' (5.30)

holds for any (integrable and square integrable) function f(x, y). We apply (5.30) to the

two choices f(x, y)=(Ix-y/op) X(Ix-y/1p) and f(x, y)= X(Ix-yI/p) to find a value of m

making the difference of the resulting integrals smaller than a preset positive number r1 for

all values of p smaller than sone p0. Then we replace F" with F in the result so that we

have

(f f f (xy)d'4(x)dA(y))2 -_n < f f f(x, y)f(Fx, Fy)dp(x)dpJ(y) < (f f f(x, y)dp(x)dp()))2 + r7

(5.31)

for our two choices of f(x, y). Then (5.31) expresses the near independence we seek.

The conditional variance Var(p, p) of the random variable (r/p)p X(r/p), subject to

the constraint that r < p, is given by

Var(p, p) = E((r/p)2
p X(r/p)) - [E((r/p)p X(r/p))]2 (5.32)

Then we may use the Kolmogorov Inequality (Feller, 1957) to bound the probability that

the approximate mean Mo(p,p.n), given by (5.26), differs from the actual value

E((r/p)" X(r/p)) by a magnitude greater than pd+*, whc - 6> 0 is to be determined. That

is, we have
ProbgM (pV)a- pIrp I /

Prob(I Mo(p, p,n)_-E((r/p)p X(r/p)) _pd+6)<_ VapJ• p) + T1+2 (5.33)
0 2d+26i n P42 2d+26

where rj is the deviation from independence associated with (5.31) for our two choices

f(x,y)=(Jx-yJ/p)PX(Jx-yJ/p) and f(x,y)=X(Ix-yI/p) . We may rewrite (5.33) in the

approximate form
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Prob(I Mo (p, p, n) - E((r/p)p X(r1p)) _ pd+) Va(p, p) (5.34)P 2d+2S 
5.4

In the same way, we note that we have, by definition,

C(p) = E(z(rlp)) (5.35)

Then we see that, because

X(r/p) 2 = X(r/p) (5.36)

holds, we must have

C(p)-C(p)2 = Var(X(r/p)) (5.37)

Then we may use the Kolmogorov Inequality again to obtain, approximately

r b) pd+ ) < C(p) -C(p)2
Prob(U(p,nz)/n_-C(p) I> p -) p 2d+23n (5.38)

We may combine (5.33) and (5.38) to obtain the estimate

Prob( Mo(p,p,n)-E((r/p)PX(r/p)) <pd+8  and ýN(p,n)/n-C(p) <pd+')

(Var(p,p) C(p)-C(p)2 (5.39)
> p2d÷2'n - p2d+26 n

The rest of this argument justifying (5.14) is routine but messy and so we transfer it

to Appendix A. The conclusion of our argument shows that whenever the conditions

0< r:5 -L and (5.16), which is n> 40(2A2 + Aa)/(9opd a' 2 ), hold, we have (5.14), which

is

Prob(I M(p, p, n) - E((r/p)P: r _ p)1 < r) Z I- (5.40)

Finally, we must derive the bound (5.17) from (5.13) and (5.14). Once this

derivation is complete, so is the justification of the Statistical Relative Error Bound. It is

fairly clear what must be done to derive (5.17), but unfortunately the details are again

messy, so we place them in Appendix B.
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6. Estimating the Correlation Dimension for the Lorenz and Henon Attractors

A fundamental problem in interpreting an estimate of the correlation dimension such

as that given in Figure 1 for the Lorenz attractor is determining the reliability of this

estimate. With the integral method for estimating d, we may address this problem using

two distinct methods. First, by evaluating the approximants d. of d given by (5.12) for

many values of p and p, we may identify those values of p for which these approximants

cluster somewhat as the value of p varies. Second, we may use the statistical techniques

introduced in section 5 to find the probability that the numerically estimated value of da lies

with probability at least 1- (p within a calculable error bound e(A1 , Vp, da) (5.18) of the

actual value d.

We may illustrate the first method by estimating the value of the correlation

dimension d for the standard Lorenz and Henon attractors (with parameter values Ra = 28,

cr= 10, b-=- as in Lorenz, 1963; and a. =1.40, bH = 0.3 as in Henon, 1976). For each

attractor, we use the values p -, j, 1, 2, 2,3, 4 to estimate the limiting moment M(p)

using the approximate moment M(p, p, n) (5.11) from a sequence r,, rl, r..., r, of distances

numerically generated in the usual way. Here we use the classical method for generating

distances r , r2, r3,... in the order they are calculated from a single generic trajectory; as

noted in section 5, this is essentially equivalent to the method introduced in that section for

generating the distances from a generic pair of trajectories.

In Figure 3, we plot the curves d = da = d(p, p, n) given by (5.12) for varying values

of p for the Lorenz attractor (Figure 3a; in which the number k of transient-free time series

points is 20,000) and the Henon attractor (Figure 3b; k = 6000); here the number of

distances n= k(k-1)/2 is given by (5.4). As we note below, only a fraction of these

distances contribute to the figures. Using any one of these curves, we would look

classically for a scaling region in which the curve is relatively constant, and we would

declare this constant value to be our estimate for the correlation dimension. As is fairly

clear, such a flat segment might be found between approximately p=1.2 and p=1.7
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Figure 3. Eight estimates d. =d(p, p, n) (5.12) of the correlation dimension d for the

standard Lorenz (Ra =28, c= 10, b = 8/3) (a) and Henon (aH = 1.40, bH = 0.3) (b)

attractors using p = 1, 1-, -, 1, 2, 3, 4; in both cases, the curves vary monotonically

from the one for p - to the one for p = 4. For the Lorenz attractor, 20,000

transient-free time series points and 10,000 bins are used, while for the Henon

attractor 6000 points and 200 bins are used, although only a fraction of these

contribute to the given ranges in p.



85

for the Lorenz attractor (Figure 3a), but it is impossible to find for the Henon attractor

(Figure 3b). The relatively flat segment for the Lorenz attractor is also a region in which

the dimension curves cluster, giving values for d between 2.08 and 2.09; these values are

close to those given by the slope estimates for small values of p in Figure la as well as to

those in the literature (e.g., Grassberger and Procaccia, 1983a, b and Nese et al., 1987

report d=2.05+0.01; Simm etal., 1987 find d=2.16+0.3). In contrast, the estimates of

d for the Henon attractor do not cluster consistently over any range of p, leading to a large

uncertainty in the estimate for d. The best we can say is that d apparently lies between 1.17

and 1.27 for p between 0 and 0.5 or between 1.21 and 1.27 for p between 0.25 and 0.45;

these values are nevertheless in the range reported in the literature (e.g., Grassberger and

Procaccia, 1983a, b cite 1.21±0.01 when the full map is used, but 1.25±0.02 when the

time series from a single variable is used; Abraham et al., 1986 find 1.24±0.02 when

10,000 points are used; Simm et al., 1987 report 1.25±0.1 when 8192 points are used;

Arneodo et al., 1987 obtain 1.199±+0.003 when 10' points are used with p as small as 2-'2;

and Grassberger, 1988 finds 1.2±0.05 when 4x10 6 points are used with p as small as

2-22). Nevertheless, Theiler (1988) notes that the Henon attractor is probably nonlacunar,

which in our context implies that a = A (e.g., Grassberger, 1988), and therefore that the

limiting moment M(p) exists, so that our integral method results probably can be trusted.

By way of caution, we recall that, as remarked at the beginning of section 5,

conventional error estimates lead to predicted errors so unrealistically small that at least one

of the following three possibilities must hold in order to invalidate these estimates:

i) The number n is not large enough to justify an appeal to the Central

Limit Theorem,

ii) The observations are not sufficiently independent, or

iii) The values of r used are not sufficiently small for E((r/p)p r<__p) and

M(p) to be interchangeable.
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It seems to us that it is the third of these that is the likely culprit. Thus, as in section 5, we

turn from the conventional approach to one yielding coarser but more reliable bounds, using

our hypothesis that C(r) - r" holds in the strong sense to diminish some of the uncertainty

introduced by possibility iii) above.

To apply this second approach, we need to associate the probability 1- q) with the

number n(p, -r, qo) of independent distances used to estimate d in the empirical scaling

region of p. As noted above, this scaling region is given classically by 0 < pmD < p < p., in

which p,., is the smallest distance for which the dimension curves are relatively level and

p0 is the largest. This is also a reasonable way to choose the scaling region in our case. To

choose appropriate values of p., we first note that as the value of p increases, the function

M(p, p, n) approaches 0 for any value of p and n. Thus it immediately follows that the

function pM(p, p, n)/(l - M(p, p, n)) in (5.12) approaches the value of 0 for larr.c values of

p. Consequently, we expect the beginning of a plunge in the graph of

pM(p, p, n)/(1 - M(p, p, n)) to signal the transition beyond the scaling region of p. Thus,

we choose the largest value p0 of p to be the one that marks the beginning of the steady

decrease to 0 in the graphs of pM(p, p, n)/(l - M(p, p, n)) such as those in Figures 3a and

3b. Next we choose a value for p•. < p0 that is large enough to exclude the noisy,

undersampled region for small values of p.

Once we have determined the empirical scaling region, we may specify the other

parameters needed to estimate the relative error bound for d. A range of trial dimensions dT

that approximate d. is given by the variation within this scaling region of d. with p. As

discussed further below, the values of a and A are given by the minimum and maximum

values of the ratio C(p)/pdr within the scaling region. By definition, we have

n(p, 9, r) - nC~p,). Thus, after reexpressing (5.16) as

40(2A2 +aA)
Vpý ~,, _ p 6.1
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we are able to find acceptable values for q) and r. If po <- 1, then we choose the value of d

in (6.1) to be the upper bound of the range for d4, while if p0 > 1, then we choose the lower

bound. We may now use (5.18) to obtain an initial estimate for the relative error bound

e(Al, •r, p, d.) for d with the associated probability 1 - q and moment error tolerance r.

This value, however, is not the smallest one available because E(Aj, r', p, d.) depends on

both p and d., which are parameters that may be regarded as varying independently within

suitable bounds.

To find this minimum value of the relative error bound, we thus regard as fixed the

values of trand A1, which is given in (5.19) by the known values of a and A. Then we hold

d. constant and minimize the value of e(Al, r, p, d.) with respect to p. Using the symbolic

manipulator Derive, we find that this minimum value is given by

[ vr-(Il-A 1) J -+. I] [ ý(A1 + -r)(-1 ) -A (A1 - 1)r A ]
ern(A1, , do) = - [1(1-A 1)_- r(A + r)][ 'r(A1 + r)(1-A,) + Al _1] (6.2)

We note that this minimum value is actually independent of d. and, because it is attained

for every value of d., it must be the global minimum e,,.(A1, r)= e.o (A1, r, d.) that we

seek. The value p,. of p yielding (6.2) is given by

Sdn [= 1- )] forA, <1 (6.3)
P r+1 V Al + I

There are two limiting cases of interest. First, for the case r = 0 of perfect estimates

for E((r/p)p:r <_ p), we cannot find a relative error bound smaller than

E..(A 0) = A(6.4)
l-Al

for any r. We call this the geometric part of the error because it is intrinsic to the geometry

of C(p), unlike the error r that is due to noise introduced by undersampling at small values

of p. In this perfect case, pn must vanish, which is forbidden because p > 0 is required in

(5.18). However, we may interpret pn,. = 0 as meaning that, no matter what value of p we
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use to estimate a relative error bound for d, we could find a better estimate using a still

smaller value of p. Second, for the case A, = 0, we obtain the limiting relative error bound

E•,.(0, r') 4r1 ,) (6.5)
(-rT)2

with corresponding pra. given by

1- T
pl = da 1 (6.6)1+?"

We call E.. (0, r) the statistical part of the error because it arises from random errors in

measurement. Below we calculate (6.2), (6.4) and (6.5) to see how close our error bound

e.•(A,, r) is to the limiting error bounds er (A,, 0) and e,•o (0, -r).

For the Lorenz attractor, we inspect Figure 3a to obtain the estimates p0 - 1.7 and

Pni.- 1.2 for the scaling region, while for the Henon attractor we obtain po -0.45 and

p -~ 0.25. The value of n(p, gp, r) - nC(po ) for the Lorenz attractor is n(p, (p, T') - 1 x 106,

while for the Henon attractor it is n(p, 4p, r) - 5 x 106. To find the values of a and A, we

calculate the ratio C(p)!pdr for several trial dimensions dT that are suggested by the plots

of d. versus p in Figure 3. It is clear from these figures that 2.08 <dT 5 2.10 for the Lorenz

attractor, while 1.21 < dT 5 1.27 for the Henon attractor. Within the empirical scaling region

pjo < p < po, the indicated value for a is the minimum value of the ratio C(p)/pdT , while A

is the maximum value, as given by (2.7). Of course, by definition a and A are the minimum

and maximum values of C(p)/pdr over the entire range 0 < p < p.. But, owing to the

unavoidable undersampling of the attractor given by our finite dataset, we must attempt to

estimate the values of a and A from the behavior of C(p)/pd, within only the chosen

scaling region. Finally, we note that, if Theiler (1988) is correct, then the actual values of a

and A should be equal for the Henon attractor (Grassberger, 1988). However, we will not

assume them to be equal in our error estimates below, and so use the following numerical

values for a and A giving A, * 0. For the Lorenz attractor, we find a - 0.00215 and

A - 0.00217 (not shown), and for the Henon attractor, a - 0.716 and A - 0.778 (Figure 4).



89

0.96

0. 92 1.27 HENON ATTRACTOR
pd7  1 Finding C(p)/pdr for 11 values of drP 0.88-- 1.26\ T

0.88-

0.84 1.24
0.76--

0.72-- 1.21 ______ --

0.68 1.20 -- _-

0.64 1.19

1.180.6 1.17 i

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5P

Figure 4. Estimates of the ratio C(p)/pdT for 1I trial values d. of the correlation dimension

d for the Henon attractor (aH = 1.40, bH = 0.3). The maximum value of this ratio in

the empirical scaling region pm,,. <P<Pp, given by p,, = 0.25 and 90, =0.45 and

denoted by the dashed lines, provides an estimate for A, while the minimum value

gives a. Here 6000 points and 200 bins are used, although only a fraction of these

contribute to the distance interval used.
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Our next task is to estimate the product q(p2 using (6.1), under the assumption that

we actually have n(p, r, q)) independent evaluations of the distances. With the above values

of a, A, d4, p,,, and n(p, r, 4p), we find that q4r2 - 2x 10-' for the Lorenz attractor, while

(pv2 - lx 10-' for the Henon attractor. Estimates using (6.2) show that acceptable relative

error bounds of no more than 15% to 20% are only achieved if r< 0.03. With q(< 0.2 to

give a probability of at least 80% that we have a good estimate for d, we conclude that we

would need to have (p < 2x 10-. Although we used 20,000 points giving approximately

2x108 distances in our estimates for the Lorenz attractor, we have only 10% of the

distances we need in the scaling region p., < p < po for us to find acceptable relative error

bounds for d; such a calculation would require 200,000 time series points, which is 10 times

that normally considered in an estimate of d (e.g., Grassberger and Procaccia, 1983a, b). In

contrast, the 6000 points we used for the Henon attractor give enough distances in the

scaling region to allow us to produce acceptable relative error bounds for d.

We now are ready to estimate the relative error bounds e(A1, 'r, p, da) (5.18),

eff•(A,, r) (6.2), effý(A 1,0) (6.4), and Ei (0, r) (6.5) for the Henon attractor. Two

combinations of (p and r satisfying the above condition on qPr 2 - I x 10-5 are used: r= 0.02,

(p= 0.025 and r= 0.01, p= 0.1. These results are reported in Table 1 and illustrated in

Figures 4 and 5. Inspection of Table 1 reveals that the smallest error occurs for dT = 1.26,

and inspection of Figure 4 shows that the ratio C(p)/pdr varies the least in the empirical

scaling region for this value of d4. The geometric part Ei(Al, 0) of the error implies an

estimate of at least d4 = 1.25 ±0.02, while the statistical part implies d = 1.25±0.1 with

probability 97.5% or dr = 1.25±0.05 with probability 90%. In contrast, the complete

relative error bound E j(AI, r) leads to the estimates d4 =1.25±0.15 with probability

97.5% and d = 1.25±0.1 with probability 90%. Incidentally, the second complete estimate

agrees with the more ad hoc one of Simm et al. (1987) and the geometric part agrees with

the ad hoc one of Grassberger and Procaccia (1983a, b).
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Figure 5. Illustration of how the optimal value dr for the correlation dimension d can be

found by minimizing the variation of C(p)/pdT for the Henon attractor (a. = 1.40,

bH = 0.3). The curve dT = 1.26 corresponds to the case in Table I that minimizes the

height A-a of the shaded rectangle in the figure. The empirical scaling region

P, 0 <P < PO is indicated by the dotted lines.
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Although our estimates are very coarse, they are objectively determined and identify

the most likely value for the correlation dimension d that can be obtained from a transient-

free time series. Inspection of (6.2) and Table 1 reveals that the values for po are not

needed to identify the optimum value of d. The error bounds are closest when the value of

Al is smallest, and from its definition (5.19), we see that this occurs when the difference

A -a is smallest. Thus, we need only plot the ratio C(p)/pd as a function of p for various

candidate values dT, and then seek the value producing the smallest difference A -a.

These candidate values are given by the approximants dca that are calculated using the

moment M(p, p, n) via (5.12).

The procedure of minimizing A -a is illustrated in Figure 5, in which we reproduce

one of the curves in Figure 4. As indicated by the more thorough analysis in Table 1, the

difference A -a is smallest for the case dT = 1.26 for the Henon attractor. Although

finding the values of a and A that minimize A -a leads to the geometric part e..(A,, 0) of

the relative error bound for d, it does not reveal anything about the statistical, and major,

part resulting from the moment error tolerance r (see Table 1). Nor does it reveal the

magnitude e(A,, r, p, d.) or emo(A,, T) of this error. We therefore recommend that a full

analysis of the relative error bounds be performed to see if they are small enough to allow

acceptance, with reasonably high probability, of the estimated values for d.

7. Hentschel-Procaccia Dimensions

Hentschel and Procaccia (1983) introduce a scale of dimensions generalizing the

Grassberger-Procaccia (1983a, b) correlation dimension d. The same device that we have

used in section 2 may be used to improve the numerical estimates of the Hentschel and

Procaccia dimensions as well. However, we first need to establish some background and

notation before applying that device.
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We assume that we have a C' diffecmorphism F: R ---> RN and a probability

measure y such that F x... x F: R" x... x R" N R" x... x RN is ergodic with respect to

u x ... xp. Then for q = 1,2, 3.... we may define the corresponding Hentschel-Procaccia

dimension D(q) by setting first

Cq(r) = j p (B(.x, r))q dp (x) (7.1)

where B(x, r) is the ball of radius r and center x,

B(x,r)={y x-y <I} (7.2)

Then we define Dq with the limit equation

- 1 1InCq(r)
Dq -- limn r (7.3)

q r.-O nr

provided this limit exists. We recall from (2.2) that the correlation dimension d = DI.

We note that we have

P (B(x, r)) = f X ( x- y/r)du (y) (7.4)

where X(() is given by (5.10), so that

CQr) f f .. X( x - yi 11r) ... (I x - )yq11r) du (yý ) ... dp (yq) dP Wx (7.5)

holds. We define a function ri (x, y! ... , Yq) by setting

rq(x, y, ...... Yj)= ain{i x -Y y I,_. Ix - ),,} (7.6)

Then we have

Cq(r)=J ...-- (rq(xyI,...,yq)/r)dp (yv ) ... dP(yq)d dt(x) (7.7)

Now we introduce a family of limiting moments Mq(p) by setting

M (p) = limE((rq/p)P: rq < p) (7.8)

provided that the limit exists. We note that we have M, (p) = M(p).
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We use (7.7) to conclude that Cq(p) is the probability that rq < p so that we have

E((rlp)p: rq <p)= l Is'pdCq (s) (7.9)
pP C•(p) )

Integrating by parts, we obtain, for p + d > 1,

0 sP dCq(S) = pPCq(p)-pJ0s'-ICq(s)ds (7.10)

and arguing as in section 2, we obtain

.ri n , Cq (P) - p+qDq (7.11)

provided that the limit exists.

We use (7.9)-(7.11) to arrive at the result

qDq - PMq(P) (7.12)
1 -Mq (P)

provided only that both Dq and Mq(p) exist. In addition, we may extend the Takens (1985)

formulas (4.2) and (4.3) to

limE([In(rq/p)]:'r
P-+-p) (7.13)

and

lim E([ln(r,,/)]': rý <p)= 2 (.4P-+O q 2Dq2(.4
2 2

Finally we extend (4.1) to

M( (p, y) [imE((rp/p)[ln(r/p)]':r < p)(-1)' qDq y!
P-1-0 q [p +ql~+ (7.15)

where M, (p, y) = M (p, y).
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8. Concluding Remarks

In this article we present a new method for estimating the value of the Grassberger

and Procaccia (1983a, b) correlation dimension d. This method connects the dimension at

the origin of a continuous probability distribution C(r) on [0, 00) with its limiting moment

M(p) at the origin. More specifically, we define the dimension of C(r) at the origin to

have the value of d if the relation C(r) - r d holds in the weak sense (defined in section 2) as

r approaches zero. If the dimension has a finite value d, then the expected value of the

random variable (r/p)", relative to the condition r _p, has limit M(p), given by (2.5), as r

approaches zero. The connection between the limiting moment and the dimension d is

given by the simple formula (2.6),

d=pM(p) (8.1)

1- M(p)

The classical algorithm for estimating the dimension identifies it with the limit given

by

d=lim dln C(r) = lir r dC(r) (8.2)
?-+o dlnr r-+OC(r) dr

Therefore, this algorithm requires the function C(r) to be differentiable, and then the slopes

of the function y = In C(exp x) approach d as x approaches - 0 (where x = In r). However,

because numerical differentiation is very sensitive to errors (see Figure I a), various kinds of

mean slopes are used instead to generate a numerically stable algorithm.

The method we introduce here, leading to (8.1), uses the hypothesis that C(r) is

continuous. Instead of differentiating, we integrate to define the function 1(p) given by

A(p) = 1P C(r)dr (8.3)

We easily see that this new function satisfies the relation 1(p) - pd*l so that
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d+ I = lim PC(p) (8.4)p..O 1(p)

holds, provided the limit exists. This formula is similar to one suggested by Theiler (1988,

1990).

By using (8.4) in place of (8.2), we eliminate the need for numerical slope-finding

routines, replacing them with the more stable numerical integration routines required for

tabulating the new function 1(p) (see, for example, Figure lb). In addition, by using

algorithms based on (8.4) instead of (8.2), we also extend the applicability of the

dimension-finding algorithms to the important case for which C(r) is not differentiable.

However, to improve directly the accuracy of an algorithm based on (8.4), we require more

accurate numerical integration of the nondifferentiable monotone continuous function C(r).

Because an algorithm other than Riemann sums is not available, we use instead a Stieltjes

integration by parts to transform (8.4) into (8.1), which requires only evaluation of certain

means, thereby bypassing errors introduced by using inadequate numerical integration

routines. By evaluating these means, we eliminate the need to order by magnitude the set of

distances, as is often done in the classical slope procedure (Albano et al., 1988) but that is

computationally very expensive for datasets of the large size required to produce usable

error bounds (see section 6). Finally, integral methods, based on (8.2) or (8.1), make it

unnecessary to find the function C(r) before finding the dimension d.

A further advantage of integral methods over slope methods is the apparently

superior rate of convergence of the former (Theiler, 1988). In any numerical or empirical

approximation of the probability distribution C(r), the smaller distances are noise-

dominated in comparison with the larger. What results is a function C,(r) approximating

C(r) well for large values of r and poorly for small values of r. As Ben-Mizrachi et al.

(1984), Simm et al. (1987), and Theiler (1986, 1991) note, Ce(r) scales with the dimension

d for large values of r, but with the much larger embedding dimension c - 2d+ 1 for small
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values of r when the correlation integral estimate is contaminated by noise. We model this

situation by considering the special nonlacunar case of an actual distribution C(r) = rd that

is approximated by a continuous distribution C, (r) given by

Cr6d-crc for 0 _r5 (8.5)
(r) r for 65_r<_.p

in which 6 is a positive number. Thus we regard those values of r lying below 3 as

belonging to the noise-dominated region and those lying above 3 as belonging to the well-

sampled region, with the transition from one region to the other taking place abruptly at

r = 6. Then we compare the slope method with the integral method by using the same

working interval [31,p], with 0< 6< < 6p< 1, to fit a line in the lnC(r)- lnr plane for

the slope method and to integrate C, (r) for the integral method. Thus the first procedure

produces the mean slope over the interval [61, p] and the second produces an approximation

of l(p). From each of these results, we derive the corresponding estimate of d. Upon

comparing these two estimates as the proportion (3-63 )/p of the noise-dominated region

decreases to zero through positive values, we find analytically in section 3 that the integral

estimate approaches the dimension d much more rapidly than does the slope estimate. In

addition, we find numerically an even more dramatic impro~ement in the rate of

convergence (see Figures 2b, c), strongly suggesting that the integral method is far less

sensitive to contamination by errors at small values of r than is the slope method. Of

course, considerable work remains to be done in this direction: first, to compare these two

methods in paradigmatic cases analogous to those given by (8.5), but with a gradual

transition from noise-contaminated to well-sampled regions, and, second, to compare the

two in the case of a similar blend of more general, especially lacunar, distributions (e.g.,

Theiler, 1988).
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Furthermore, in section 7 we extend the integral method to apply to the case of the

Hentschel-Procaccia generalized dimensions of integral index (Hentschel and Procaccia,

1983), and in section 4 we also recover the formulas of Takens (1985).

Besides the apparently more rapid convergence of the integral method over the slope

method, a second advantages lies in its formulation in terms of expectations and

probabilities: This formulation enables us to use the simple Kolmogorov Inequality to

bound, in an a priori manner, the probability that our estimate of the dimension differs from

the actual dimension by more than a prescribed amount. In this article we begin this

process by arriving at somewhat coarse error bounds, and identifying four obstacles to

obtaining more refined and satisfactory versions of these. First, our results depend upon the

hypothesis that the relation C(r) - rd holds in the strong sense that is defined in section 2;

however, it is fairly clear how to adjust our arguments to the weak case so that this obstacle

is not a very serious one. Second, our arguments require that two successive evaluations of

certain random variables be nearly independent. This requirement may be met by thinning

out the time series, by, for example, using every tenth point encountered to calculate the

series of distances used to estimate C(r). Unfortunately, such a thinning, together with the

required length of the surviving time series, amounts to restricting the validity of the error

bounds we find to cases having extremely long time series, such as computer-modeled

attractors. The third obstacle results from the need to bound the magnitude of

IE((rp)p: r <_p) - M(p) . In this article we make use of the very weak bound

AI = A/a-a/A, which, in addition, makes sense only when the relation C(r) - rd holds in

the strong sense for which a< -C(r)/rd <-A. What we need here is a stronger bound.

especially one that is valid in the weak case. Finally, the fourth and most serious obstacle is

posed by those correlation integrals C(r) for which the limiting moment M(p) does not

exist (Theiler, 1988). As noted in section 2, the limiting moment along an appropriate

subsequence pA, P2 ,p131 ... still exists and yields the correlation dimension via (2.21), but the

problem of extracting this subsequence is formidable.
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An alternative approach would be to develop usable algorithms to enable us to

decide when a specific attractor yields a strong case of the relation C(r) - r d, not only to

detect the strong case, but also to provide estimates of the associated parameters p., A and

a. For example, we may ask whether, for all practical cases, a numerical model of the

Lorenz system (Lorenz, 1963) yields a strong case of the relation C(r) - r . Or, even more

specifically, whether we may prove at least that the Smale-Williams hyperbolic attractor

(Smale, 1977) yields a strong case, and if so, whether we may estimate rigorously values for

the parameters po, A and a. We suggest that such considerations as these may lead to an

objective and effective algorithm to determine the scaling region in a computational or

observational setting.

Application of our coarse relative error bound algorithm to the standard Henon

attractor (Henon, 1976) yields values of the correlation dimension equal to dr = 1.25 ±_J..15

with probability 97.5% and moment error tolerance r=0.02, and dr = 1.25±0.1 with

probability 90% and r=0.01, respectively. These error bounds are similar to those

reported in the literature (e.g., Simm et al., 1987). Use of longer series to reduce noise

contamination at small distances would presumably lead to improved estimates. If we are

not interested in error bounds on the value of the dimension d, then our analysis suggests a

simple procedure for estimating d from a time series of measurements. First we find several

independent estimates d. for d using the limiting moment M(p). Upon plotting the

approximate values of d as functions of the maximum distance p, we obtain a relatively

small range of candidates dr for d in an appropriate working interval of p. We determine

the optimal value of d from this set of candidates by determining which one yields the

smallest difference A -a in the ratio C(p)/pd, over the associated working interval of p.

This approach is used by Fosmire (1993) in an analysis of two time series of atmospheric

boundary layer winds.
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The probabilistic context associated with our derivation leads to another method for

generating the correlation function C(r). Instead of using all the mutual distances between

points on a relatively short time series of points on the attractor, we may use the distances

between corresponding points on two extremely long time series. Because the two long

time series pass through more of the attractor at a greater variety of scales, we may expect

that the approximation to C(r) thereby obtained is more accurate than the one obtained

from the mutual distances in a short series. Of course the principal drawback to this

technique is that it requires such a long time series that the method is effectively restricted

to computer-modeled attractors.
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Appendix A

Completion of the Proof of the Statistical Error Estimate (5.14)

Our next task is to find an upper bound for the values of Var(p, p) and

C(p) - C(p)2 ; we may combine (5.23) and (5.29) with the definition (5.32) to obtain

Var(pp) [A 2p a 2p _ 2 A( p 2(
[ap+d A2p+d a Ip+d) (

We note in passing that the left side of (Al) is indeed positive. Using (Al), we may

weaken (5.39) to the inequality

Prob(I M0 (p, p, n) - E((r/p)"x(r/p)) I < pd" and jN(p,n)/n-C(p)I <pd+8 )

C(p) [A 2p A 2,, (A2)
1p22a n La p+d] p,+28n 2d+2a

We check that the two premises

IM (p, p, n) - E((r/p)Z X(rlp))I < Pd+ (A3)

and

jNip, n)/n -C(p)I <pd+6  (A4)

imply the consecutive inequalities

Mo4(p, p, n) E((r<p) X(r/p)) pd+ E((r/pY X(r/P))Pd+5

N(p, n)/n C(p) N(p, n)/n C(p) N(p, n)/n (A5)
< p d.6 E((r/p)p X(r/p))pd÷B

C(p) - pd+b (C(p) - pd" ) C(p)

where we have used (A4) in the second step. We note that the two equations
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M(p, p, n) = MN(p, p'n
Nl(p, p)in

E((rlp)P -:r < = E((r/P)PX(r/p)) 
(A6)

C(p)

follow from their definitions; further, we note that the trivial inequalities

E((rlp)" X(,r/)): C<-- (A7)
C(p)- pd+3 >- (a- pl) pd

hold. Then we may use (A5)-(A7) to conclude that we have

I M(p, p, n)- E((rlp)p:r5 <P)I-" 2P (A8)a-p8

Thus the conjunction of (A3) and (A4) implies (A8), and so the event described by (A3)

and (A4) is contained in the event described by (A8). Consequently, we have

Prob(IM(pp n)-E((r/p)p:r p)j_2 a-p' A9>
a-P (A9)

Prob (I Mo (p. p. n) - E((r/p)p x(r/p)) I<O pd and JN(pn)•/n-C(p)R<pd+4)

By combining (A9) and (A2), we obtain

Prob(IM(p.p,n)-E((rlp)p:r:5p)152 2a> 1 Ap+ A )
a-e pd•+25 n a p+d P d2

(AlO)

For values of p6 satisfying 0 : p8 s a/2 1, we have

p2 < 2.1p 8  (All)
a-ps a
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Making an obvious simplification on the right side of (A10), we then obtain, for small

values of p,

Pb I ( (IP u2.1 P 2A' + Aa 271 (A2
ProbM(p, p,n)- E((r/p) r: p)I a >1 apd+2,n pnd+28  (A12)

Finally, we may rewrite (A12) using the abbreviation r'= 2.1p"/a to obtain

Prob(I M(Ppn)_-E((r/): rp)_ 1 -)-a 40 2A2 +Aa 2 A

9 a3pd 2n p 2d+2* (A13)

that is valid for 0•v <:5 -L. Equivalently, we have

Prob (IM(p, p, n)_-E((r/p)p: r<_p)j > r)<ý40 2A2+Aaa+ 2t(A14
- 9 a3pd 2+ (A14)

Thus, we arrive at the following probability estimate:

Statistical Error Estimate If the conditions 0• t _:5L and (5.16), which is

nŽ_ 40(2A2 +Aa)/(99ppa 3r2 ), hold, then we have

Prob(IM(p, p, n)- E((r/p)p:r _<p)1: );_ :) 1-(p (AI5)

or, more precisely

S80 rl(A6

Prob(fM(pp,n)-E((r/p) ) 1: p )>- 1- 9 -02d2(A16)

where rl is the deviation from independence in (5.31).
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Appendix B

Completion of the Proof of the Dimension Relative Error Bound (5.17)

We begin by noting that, from (2.18) we have M(p) =d/(p+d), so that we may

rewrite (5.13) as

where we have introduced the abbreviation (5.19). Using (B 1), we see, first, that

r(p) >p) (B2)
1-A,

and then that

E((rp)":r _ p)- M(p) I A-' [I- E((r/p): r _p)] (B3)

hold. From (A16), we have that

IM(p,p,n) - E((rlp)p: r 5 p)• < r (B4)

holds with probability greater than or equal to 1- p- 80 r/9p 2d ra 2 provided that (5.16)

holds. Then we obtain from (B3) and (B4),

jM(p,p,n)-M(p)j A-'(r+1-M(p,p,n))+ r (B5)

which holds with probability greater than or equal to 1- o-80ri/9p2d ta 2 provided that

n Ž n(p, r, (p) in (5.16).

We next compare the actual dimension d given by (2.6) with the approximate

dimension d. given by (5.12) that is obtained from our approximate moment M(p,p,n)

(5.11). In our calculation below, we also use



106

I - M(p) < (B6)

1-E((r/p)":r_5p)1-A1

that follows immediately from (B 1). Then we combine (B 1), (B5), and (B6) to obtain

d-d < A,(l-M(p,p,n))+r

d (1-M(p,p,n))(M(p,p, n)-A -)

Next we solve (5.12) for M(p, p, n) and insert the result in (B7) to obtain finally our basic

in:o.qu,ality

Id-_dda < Ap+ r(p+d,) p+do = e(A,, r, p, d,) (B8)

d da-(p+da)(Ai+r) p

bounding the error I d - d. I as a proportion of the actual dimension d, where the expression

on the right side is the bound e(A, ,r,p,da), (5.18), we seek. We note that similar

maneuvers lead to a bound on the error as a proportion of the known quantity da,

d-da< Ap+ r(p+d.) p+d° (B9)
da p- r(p+da) da

The bound (B8) is estimated in section 6 for the Henon attractor.
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